A Survey on thread assignment techniques on
Multicore Processors

Sandeep Lanka

Department of Electrical and Computer Engineering
Houghton, MI, USA
slanka@mtu.edu

Abstract—Threads can be assigned to multicore processors
based on the Processor’s Architecture to enhance performance.
This paper surveys different efficient thread assignment
techniques on processors with both Heterogeneous and
Homogeneous cores. The first approach to assign threads is to
assign threads statically depending on a prior knowledge. The
other approach is to dynamically assign threads during execution.
This paper classifies the thread assignment techniques based on
whether they are assigned statically or dynamically on both
Heterogeneous and Homogenous Architectures and their
performance improvements from prior works.

Keywords—Thread Assignment; Multicore processors;

L. INTRODUCTION

The main objective of a multicore architecture is either to
improve the throughput and single thread performance or for
power efficiency for the same workload. One approach is to
increase simultaneous processing of multiple threads on the
same processor by some means, that is, to increase Thread
Level Parallelism. The other approach is to build
multiprocessors that have same or different copies of more than
one core that can handle threads simultaneously. If there is a lot
of thread level parallelism that can be exploited in the given
application, the second approach seems right. On the Other
hand, if the application does not have that much Thread level
parallelism it might not be a good idea to go for a Chip Level
Multiprocessors Chip level Multiprocessors that have multiple
copies of the same core are called Homogenous and
multiprocessors that have cores that have different capabilities
and performance levels are called Heterogeneous
Multiprocessors. The need for Heterogeneous multiprocessor is
the fact that different applications have different amounts of
Instruction Level Parallelism(ILP). If the application has a large
amount of Instruction Level Parallelism, a core that can issue
many instructions per cycle such a Superscalar can perform
really well but for a application with a very low amount of
Instruction Level Parallelism(ILP) the same superscalar may
not be as efficient. If there is another core that suits this kind of
application, it is better that it is assigned to such a core. If the
applications requirements are consistent we may want to opt for
a homogenous multiprocessor. Prior works have shown that
these kinds of architectures increase the performance
significantly. The main problem with these kinds of
multiprocessors is in assigning the threads efficiently to each

core or even scheduling the threads or core switching based on
the need. The assignment mechanisms must consider workload
and behavior of threads overtime and decide the appropriate
core in heterogeneous processors in case of dynamic
assignment and map the threads to the corresponding cores. The
other approach is to decide the priorities of the threads based on
prior information and assign threads accordingly. The
appropriate mapping of the threads to heterogeneous processors
can increase the core utilization and thus the overall throughput
which is the main aim of a multiprocessor.

This paper thus, deals with these thread assignment techniques
to multicore processors for performance enhancement or power
efficiency.

II. TERMINOLOGY AND TAXONOMY

Processors with Multiple cores integrated on the chips are called
multiple processors. These are adressed as Chip level
Multiprocessors(CMP). These cores can handle threads
simultaneously and if the threads are distributed rightly, there is
a scope for increase in throughput. The main problem is to
rightly distribute threads and this paper deals with these
techniques that increases the efficiency of these processors.

A. Homongeneous/Heterogenous Multicore Processors

The above mentioned Chip level multiprocessors can either
be Homogenous or Heterogenous Multicore processors. Chips
that use multiple copies of the same core are called
Homogenous multicore processors. That means that all the cores
are uniform with a fixed performance characteristics.
Heterogenous processors on the other hand, have cores that are
diverse. Core Diversity offers much higher abilty to adapt to the
demands of the application.

1. Static Assignment Techniques:

Static Assignment techniques simply map the threads to the
cores depending on the prior knowledge of the application
or by some heuristic that does not depend on the dynamics
of the application. Although these techniques might try to
map threads based on the architecure, the thread-to-core
mapping once made does not change between the execution
of the program.

2. Dynamic Assignment Techniques:

Dynamic Assignment techniques not only map the
threads to the cores at first but also monitors the
dynamics of the processor. Dynamic assinment
techniques then map the threads to the cores depending
upon the heuristic that determines which core is more
capable for that part or to achieve a degree of
parallelism or any other parameter.

3. Fixed Assignment Techniques:

Application based Static or Dynamic Assignment
techniques map the threads to the

4. Application based Techniques:

Application based Static or Dynamic Assignment
techniques map the threads to the cores depending on
the prior knowledge of the application based

5. Energy Efficient Techniques:

Application based Static or Dynamic Assignment
techniques map the threads to the cores if the
processors in a Energy Efficient manner.

Thread Assignment
Techniques

Techniques for

Techniques for

Heterogenous
Homogenous Processors

Processors
——Dynamic —— Dynamic
—— Static — Static
— Energy Efficient “— Energy Efficient

Figure 1: Taxonomy

III. THREAD ASSIGNMENT ON HOMOGENOUS
PROCESSORS

If the application demands uniform performance throughout
its execution and if there is a reasonable thread level parallelism
associated with it, Homogenous processors can increase the
throughput.

A. Static Techniques

L. Fixed

Fixed Thread assignment techniques are those that are the
simplest assigning techniques that are consistent and the
performance with respect to that assignment does not affect the
scheduling mechanism. These techniques are general thread
assignment techniques that just distribute threads to the
resources.

1. First In First Out:

It is also known as First Come First Served technique. It is a
simple technique which queues processes in the order which
they arrive and assigns them to the cores one after another in a
regular fashion. This might be very useful for aplications that
constantly take a fixed time and thus mapping in this fashion
increases the throughput. If the proceses take different times to
execute and if there is a long process involved it increases the
latency and thus the overall throughput.

2. Fixed Priority Preemptive Scheduling:

Each Process is assigned a rank and depending upon the rank,
and the scheduler arranges the processes in the order of the their
prority before scheduling them. Higher priority processes are
scheduled first. If the number of rankings are limited, queues are
ranked depending upon their priority and scheduler selects
processes from low priority queues only after the higher priority
queues are scheduled.

3. Multilevel Queueing:

In this type of scheduling, processes are divided before hand,
into categories that are considered different levels. For
example, Common division is made between foreground and
background processes and are scheduled seperately.

2. Application based

Application based assignment techniques are those that are
based on the prior knowledge of the application and the
assignments are assigned according to the heuristic that is
application specific.

1.Global and Partitioned Multiprocessor Fixed Priority
Scheduling with Deferred Preemption:
This method is proposed by Robert I Davis and Alan B , Jose
M, Vincent N and Stefan M. P proposes a scheduling technique
for a application on a homogenous multiprocessor system with
some identical processors. The application is assumed to be a
set of tasks and each task is assigned a unique priority. Tasks
are assumed to comply with a sporadic task model. Each task
comprises of a presumably unbounded sequence of jobs. Each
job may arrive at any time once minimum time interval has
elapsed since the arrival of the previous job of the same task.
Each task is characterized on the basis of its relative Deadline
D, worst case execution time, C, minimum inter arrival time or
period T. Each Tasks utilization is given by C/T.

This methods Priority Scheduling technique that is

based on two prior different models of fixed priority
scheduling. Fixed Model, also called cooperative scheduling

and and Global Fixed Priority Scheduling. In the fixed model
introduced by Burns the non preemptive regions are recognized
prior to execution. The floating model [Baruah 2005; Yao et al.
2009; Marinho et al. 2012] sets an upper bound to the length of
the longest non preemptive region of any task.

Under Global Fixed Priority Scheduling with Deferred
Preemption(gFPDS), it is focused on Global fixed priority
Scheduling of an application on a homogenous multiprocessor
system with m identical processors. It is assumed that all taska
have constrained deadline wchich is D<T; Each Task is
assumed to have a FNR of length F in the range of [1,C].
Finding the appropriate FNR is assumed to be part of the
scheduling problem. The worst case response time is the lonest
time it take from the release of a task to its complete execution.

Under gFPDS, at any given time, the m ready tasks
with the highest priorities are selected for execution. Final non
preemptive regions are assumed to be implemented by
manipulating task priorities. Thus, the task executing its FNR
has the highest priority and will not be preempted.

The tasks are assumed to be independent and so cannot
be blocked from executing by another task. Other than the due
to contention for the processors. Each job may execute on at
most one processor at any given time which means job
parallelism is not permitted.

A task is set to be schedulable with respect to some
scheduling algorithm, if all valid sequences can be scheduled
without any missed deadlines.

A priority Assignment policy is said to be optimal with

respect to schedulability test for some type of fixed scheduling
algorithm if there are no task sets that are deemed schedulable,
according to the test, under the scheduling algorithm using
other priority ordering policy.
The paper that proposes the method further shows the
comparison between gFPDS and other contemporary or prior
algorithms and concludes that, gFPDS shows that appropriate
choice of length of these preemptive regions can enhance
performance.

B. Dynamic Techniques

1. Round Robin

Round Robin assignment is distributing threads to processor
cores one after another in a round fashion. The tasks are blindly
allocated to all the processor without any runtime
considerations.

2. Thread Delaying and Thread Balancing:

Thes techniques are proposed by R Rakvic and Q.Cai, J.
Gonzalez,G.Magklis, P.Chaparro and A.Gonzalez utlizes a
mechanism called meeting point thread characterization that
identifies the critical thread of a single multithreaded application
as well as non critical threads. This is achieved by a thread
counter that accumulates number of iterations executed for the
parallel loop. At specific intervals each threads broadcast this
information. This information determines the noncritical and the
critical threads. Each threads own iteration counter and the other
threads iteration counters difference and the counter of the
slowest one. The goal is to scale down the voltage/frequency for

the next interval time. This scaling down of Voltage/frequency
keeping in mind the expected time of arrival is called Thread
Delaying.

Thread Balancing is a hardware scheme for a simultaneous
multithreaded processors running parallel threads. The goal is
to improve execution time by speeding the critical thread. This
is achieved by giving the most priority to the critical thread in
the issue slots.

The important part to either perform Thread Delaying or
balancing is to recognize the critical threads dynamically. This
is achieved by checking the workload balance at intermediate
points of a parallel loop. These intermediate checkpoints are
called meeting points. The whole process consists of the three
steps:

1. Insertion of the meeting points: This is chosen to be the
place where all the threads visit many times during the parallel
execution.

2. Identification of critical threads: A thread-private counter
is incremented every time a core decodes an instruction
encoding a meeting point. The user inserts the meeting point
using a pragma which when decode increments the hardware
counter of the thread.

3. Utilizing the criticality information: This information is
used to implement Thread Delaying or Thread Balancing based
on the requirement for energy efficieny or improve overall
execution time.

Due to the cubic relationship between power and
frequency/voltage, it is better to make non critical threads run at
lower frequencies.

In case of Thread balancing, A simple fair issue might not be
very useful if all threads are not similar and hence critical threads
may need more priority than non critical threads. This method
dynamicaly speeds up the slowest thread by increasing its
priority. In order to implement this, we should be able to identify
threads that are the slowest. This is the same as the thread
delaying methodsto identify critical threads. A meeting point in
the program is recognized and the meeting point is used by
imbalancehardware logic that detects, at runtime, the imbalance.

Finished
Thread Imbalance TIME =
Fast thread l
Slow thread

Balanced Threads TIME =2

Equal threads

T

Finished

Figure 2: Thread Delaying

The imbalance hardware logic monitors the instruction that is
currently executing to determine if the thread has reached its
meeting point. It gives out two things , the slowest of the threads
and the number of iterations the faster thread is faster than the
slower of the two threads.

Fast thread Slow thread

Per-thread
Instruction
Queunes

\ ///lssue Priority Hardware Logic

Determines thread issue priority (as
shown, priority is given to slow thread
|3 instructions issued for slow thread
instead of 1 instruction for fast thread))

Figure 3: Thread Balancing

The Imbalance information is then used by the issue
prioritization hardware logic which us used by the issue stage of
the multithreaded processor.

C. Energy Efficient Techniques

1.Leakage Aware Largest Task First

This technique proposed by Jian-Jia Cen and Lothar Thiele
is based on the idea that Dynamic power consumption due to
switching activities and Static power consumption due to
leakage currents are the two major sources of energy
consumption of a CMOS processor. Dynamic voltage scaling is
discussed in the previous section. Dynamic power consumption
is directly propotional to the speed/frequency and this idea
motivates to execute on lower speeds. Thus as discussed in the
previous section power is scaled down by scaling down the
voltage/frequency. This paper suggests that the critical speed
which is the speed that the processor is turned down to to make
it dormant when there is no job for execution might be too
optimistic and that the processors dormant mode might be
energy-inefficient. Instead of that, this paper proposes a new
approximation algortihm which can reduce the energy
consumption by 15%. This is because the algorithm from the
previous section assumes that there is nooverhead involved for
turning the processors to the dormant state. This can be
explained as follows: The critical speeds are considered to be the
limitation for task assignment but for m identical tasks under
tight conditions ,the actual consumption according to the paper
is amost 1.667 times the optimal solution. Thus, proposes a
algorithm for the Leakage Aware Multiprocessor energy
efficient scheduling problem.

Leakage-Aware Largest first is used to verify whether it is
necessary to consider speed independent power consumption.
This algorithm assigns the largest unassigned task, which is the
defined as the task with the largest ratio of the amount of the

required computational cycles to its period as describes in the
previous section, to the processor with the smallest workload. If
there are n tasks, tasks are indexed from the largest to the
smallest arbitarily.The first m tasks are assigned to the first m
processor. If after task ¢, if computation cycles to period ratio is
greater than the critical speed and computational cycles and in
the next iteration the ratio is less than the critical speed, It means
that there exists a lower bounded solution which executes task
till that iteration where the ratio is greater than the optimal speed
which is now the computation cycles to the period ratio till the
point where the ratio is greater than the critical speed. Then we
schedule tasks to the m-k processors. Consider a set T of
independent tasks over M identi- cal processors with a common
power consumption function P(s)=s3+ B ,where B =0,and all
tasks in T are ready at time 0. Each periodic task 7 € T is
associated with a computation requirement in ci CPU-cycles and
a period pi, where the relative deadline of zi is pi. The algorithm
can be summarised as shown:

ALGORITHM :
Input: (T, M);

1. Sort all tasks in T in a non-increasing order ci/pi for T
JAET,

Derive the critical speed s ;
Set11,12,--- M to 0, and T1,T2,--- ,TM to &;
fori=1to|T|do

wok w

Find the smallest Im; (break ties arbitrarily with 1 < m
< M)

6. Tm~Tm U {7i}andIm <~ Im+ci; Sort all the tasks
in a non increasing order of ci/ pi.

7. Return the schedule SCLA+LTF which turns a
processor into the dormant mode instantly when it is
idle, and executes all of the tasks in Tm (1 < m < M)
in an earliest-deadline-first order on the m-th processor
at speed s0 if Im << s0, or at speed Im, otherwise;

The tasks in T are assumed to be reindexed from the largest to
the smallest, and the workload can be distributed to all the m
processors in the critical speed.

3. Speed Scaling on Parallel Processors

This technique introduced by Sussane A, Fabian M and Swen S,
investigates algortihmic instruments leading to lo power
consumption. The paper claims that there are two mechanisms
that can save energy on a logarithmic level. Speed Scaling and
Sleep States. The first approach is that processors can be made
to operate at variable speeds. The key being that higher the speed
higher the power consumption owing to the cubic relationship
between power and frequency. The other approach is to put the
system to sleep state which is a low power idle state. The main
problem with this approach is that it is difficult to find out when
to shut down a processor since the transisiton back requires extra
energy.

Polynomial Time Algorithm

The Polynomial time algorithm described in a previous work by
Yao et al is a Round Robin algorithm. If we were given n jobs
on m identical variable speed processors, specified by the release
date r(i), deadline d(i) and processing volume p(i) . The jobs are
sorted according to their order of their release. The algorithm is
described as follows.

1. [Initially The jobs are numbered in order of non
decreasing release dates. If two jobs have the same
release dates they are sorted in order of their non-
decreasing deadlines

2. Once the Sorted jobs are computed in step 1, assign the
jobs to processors in a round robin fashion.

3. For each processor, if there are a certain number of jobs
assigned to it, the optimal service schedule is computed.

Theorem: For a set of unit size jobs with agreeable deadlines,
the algorithm computes an optimal service schedule.

In accordance with the given theorem ,

FACT 1: Given a feasible schedule for jobs with agreeable
deadline, on any processor the assigned jobs can be reordered
such that they are executed in order of increasing job index. This
rendering does not cause a higher energy consumption.

The paper then considers a unit size jobs with arbitary release
datas and dealines and a new polynomial time algorithm is
developed. The paper also shows that the problem of minimizing
the total consumed energy is a difficult problem.

Classified Round-Robin

The algorithm divides the given jobs into classes and then, when
assigning jobs to processors applies round robin strategy
independently for each class. The classification is done such
that a class contains all the jobs of the same density. Density is
defined as 1/(d(i)-r(i)). d(i) is the Deadline of the task and r(i) is
the Release date. Each job has a processing requirement. The
algorithm can be described as follows:

1. For each class C, First the jobs are sorted in non
decreasing order of release date and then assigned to
processors in a Round Robin fashion.

2. For each processor, given the jobs assigned to it, an
optimal service schedule is computed.

LEMMA:For any number of jobs, the energy of an optimal
schedule on m processors is at least 1/m*”’ times that of an
optimal schedule on one processor.

Suppose we are given a job with r(7) =0, , for all i. The deadlines
d(i) may take arbitary values. This strategy combines earliest
deadline and List scheduling to assign jobs to processors. At any
time, the load of the processor is supposed to be the sum of the
p(i)’s.

Earliest Deadline List Scheduling Algorithm

1. The jobs are numbered in order of non-decreasing
deadlines which is d(1)<...<d(n).

2. The jobs are considered one by one in the order
compute in step 1. Each job is assigned to the processor
that currently has the smallest load.

3. Given the jobs assigned to it, each processor computes
the optimal speed sequence using the optimal offline
algorithm for a single processor.

All of the above algorithms, Polynomial Time Algorithm,
Classified Round Robin Algorithm, Earliest deadline algorithms
can be modified so that they work in an online scenario meaning
that the jobs arrive overtime. That is, a job i togather with its
correspondng characteristics d(i) and p(i) becomes available at
its release date 7(i). This means that the jobs must be assigned to
a processor without the knowledge of future jobs arriving at
times t> 7(i).

IV. THREAD ASSIGNMENT ON HETEROGENOUS
PROCESSORS

A. Static Techniques

The best static known assignment techniques are based on the
assumption that the characteristics of the workloads are known
as a priori. The workloads if not known beforehand, static
techniques might not prove to be a good option especially if
there is a large diversity.
1.Random Static Assignment

The random static assignment method does not need to know
the priori knowledge of the the workload. As the name implies
the threads are mapped completely in a random fashion to the
processors. If the system has more threads than there are cores,
unassigned threads will be given a processor as soon as one is
available.

2.The Pseudo best Static Assignment

The pseudo best static assignment assumes the runtime
characteristics of the workload is known beforehand. It assumes
the presence of an oracle that provides the programs IPC and the
number of instructions to be executed. This means that we check
for the best static assignment of threads to the cores. Instead of
finding the best assignment the most common means is to find
the suboptimal assignment based on a heuristic.

3.Phase guided Thread to core.

The resource needs of the threads must be rightly or closely
met. That is the goal of a good assignment technique. This
tecnique automatically determines the mapping between threads
and performance-asymmetric cores of a processor. The main
idea that is exploited in this technique is the fact that programs
exibit phase behaviour. We take code sections and classify them
and group them so that a particular group exibits more or less
similar phase behaviour.Thus the exibited characteristics of the
different sections on different types of cores can be used for
automating thread-to-core assisgnment at a lower runtime cost.
With multiple target architectures the mapping becomes very
difficult to map manually by the programmer. Phase behaviour
means that when the program goes through different phases of
execution that phases consistently show similar runtime
characteristicscompared to other phases. Thus, this approach
consists of two parts. An Offline program analysis that is
supposed to identify the transistion points in a program and a

lightweight dynamic analysis that determines thread to core
mapping. The phase transisiton point is a point in the program
where runtime characteristics are likely to change. These may
not be distinct but most likely.

Phase guided assignment

If we can classify a program’s execution into code sections
and group these sections into clusters such that call clusters
exibit similar runtime characteristics, thread to core assignments
for unanticipated cases that might involve varying architectures
can also be involved. The Offline analysis performed identifies
the phase transisition points. Each phase transisiton point is
instrumented to insert a phase mark which is a small code
fragment. A phase mark plays the key role of analysing the
dynamic performance and makes core switching decisions.The
results of the analysis determine the suitable core mapping for
the phase type.

The Offline Analysis is performed as follows. The program
is divided into Procedures and each procedure is again divided
into basic blocks. A block is a section of code that has one entry
point and one exit point. Each block is then classified into
exactly one type. From these atributed intraprocedural control
flow graphs for Procedues are created. The control flow graph is
then partitioned into unique set of intervals using standard
algorithms. For each Interval, we compute its dominant type by
doing a depth-first traversal of the interval starting from the
entry node. A sample run of the traversal is shown in the paper
is as shown:

On reaching a control flow node with an outgoing backward
edge, if the edge has not been previously traversed, the target
node is calculated. The weights are heuristically decided and

Figure 4: Offline Analysis Control Flow Graph

the Node weight function maps to the values based on heuristic
measure of the expected time of the block and the dominant
type of the interval is then decided.

During a depth-first traversal we maintain a stack of control flow
nodes encountered thus far (¢ = n + p ') with the entry node
of the interval at the bottom of this stack and the currently visited
node at the top of the stack. A type map for the interval (M : IT
— R) is maintained. On visiting a control flow node n in the
interval, the type map M is changed to M’ ,where M’, is

M & {nr —M(n)+wf *o(n)}. Here, m is the type of the control
flow node, wr is the forward edge weight, ¢ maps nodes to node
weights, and @ is the overriding operator for finite functions.

In Figure 3, 1 and 4 are the control nodes. The control
nodes Map the control to the next node depending upon the
weight of the edges which is given by the function M. After the
Phase Transisiton analysis, phase marks are statistically
inserted j, the binary to produce a standalone binary with phase
inforamtion and dynamic analysis. The attributed Control Flow
Graph is then considered section by section, The approach is to
mark all the edges in the Control Flow Graph where phase and
target sections have different phases.

Thus, After the Phase transisiton marking is complete,
we have a modified binary with phase marks in the Control Flow
graph. The phase marks not only switches cores between
transistions between phases but also monitors the current
performance characteristics and determines the phase type if the
phase type has not been determined previously.

Thus, Phase-Guided Thread to Core Assignment
improves the utilization of Assymetric Multicore processors
statically.

B. Dynamic Techniques
1. Round Robin

Threads can be assigned to cores in a round robin fashion
just like in the Homogenous processors round robin assignment.
That is to periodically rotate the assignments of the threads to
the processors. This policy ensures that all cores are assigned
threads and no core remains idle. A method defines the
frequency of the rotation. The Round Robin strategy is blind. It
is unaware of the runtime information and at that frequency that
is decided, it continously allocates threads to the processors.

2. IPC Driven

Round Robin mechanism can be improved by considering the
characteristics of the executing threads. A good assignment as
the programs enter different phases. Relative IPC can be used as
a metric to quantify thread behaviour and assign dynamically.
The value of the IPC of the running threads can be easily made
at the end of each execution cycle. The overall performance can
be improved for a heterogenous architectures if threads are
executed on the right cores meaning that the threads which meet
their resource requirements. Threads can first run on some
available core and migrate to the right core when the faster core
becomes idle. This kind of thread migration although might
seem useful carries with it a overhead and sometimes might
prove costly.

In order to implement IPC driven thread assignments, First,
the IPC values on all processors must be available in order to
make assignment decisions. There should be some kind of a
learning mechanism involved in order to learn the IPC values at
the end of each cycle or at regular intervals. It must also be
defined as to how often and how the control information can be
or must be used. It is assumed that the program’s current IPC is
always available for the processor that is executing the program
since the program executes only on one processor at a time.

The Key idea is to control the thread migrations in IPC Driven
assignments. Forced migrations performed in order to keep the
IPC estimate accurate. IPC estimate can be intialised in two
ways.

1. Periodically on all threads at the same time
2. Per-Thread basis

Each program from the section on Phase-guided thread
assignments has a unique IPC. The patterns differ in both shape
and phase duration. Therefore, a single migration maynot be
suitable for all programs. Long threads would penalise threads
with shorter exectution time and short threads would trigger
useless migrations which involve overheads and might not be
very energy efficient.

The phase behaviour of the program does not depend upon the
executing processor. By this fact, forced thread migrations can
thus be triggered by a raoid variation in the IPC. The use of bare
relative IPC as a control variable would cause continous
variations of IPC within a limited range to trigger frequent
migrations. In order to avoid this phenomenon, the IPC driven
mechanism uses the moving average of the IPC as the control
variable. Additionally a forced migration is triggered at the
beginning of the system to initialize the system. This process
also ensure that no processor remains idle by migrating
unassigned threads to the all the processors like in the Round
Robin case.

It is experimentally proven that dynamic assignments improve
performance of the heterogenous mutlicore processors. The
presence of may low area cores ensure a high level pf parallelism
and the when thread parallelism is low, high performance cores
ensure good throughput.

3. Dynamic Assignment for Intra-thread Diversity

This “Best Core assignment” strategy proposed by Rakesh K,
Dean M. T, Parthasarathy R, Norma P. J and Keith I Farkas
demostrates that dynamic core assignment policies that provide
significant performance over naive assignments and even
outperforms the best static assignment. The heterogenity comes
from different cache sizes, their raw execution bandwidths and
other fundamental characters such as inorder and out of order
processors. Other architectures also seen to address both single
threaded latency and multiple threaded latency. Simulataneous
multithreading can devote all processor resources on a
superscalar processor to a single thread or divide them among
several.

Workload-to-core mapping is one dimensional problem as the
workload consists of a single running thread. With multiple
cores and multiple threads, the task is not to find the best core
for the thread but to find the global best assignment. The paper
strives to maximize average performance gain over all
applications in workload. Fairness is not taken into conderation
explicitly. There is another problem with the concurrently
executing threads which is Cache Conherence. This is overcome
in this method by using disjoint address spaces. It should be clear
by now that there are more advantages when exploiting core
diversity for inter-workload variation.The paper eexamines
implementable heuristics that dynamically adjust the mapping
to improve performance. These hueristics are sampling based.

During the execution of the workload there is a trigger that
initialises the sampling phase. In the samplig phase, the
scheduler permutes the assignment of appication to cores,
changing the cores onto which the applications are assigned.
The dynamic execution profiles of the applications being run are
gathered by the referencing hardware performance counters.
These profiles are then used to create a new assingment which
is then used for a much longer phase called the steady state and
so on. The steady state continues until a next trigger is trigger
and new assignments are made. The main part that implements
such a strategy is the sampling mechanism. This method focuses
on the core sampling strategies.

The first Strategy is called Sample-one which samples as many
assignments as is needed to run each thread once on each core-
type. This assumes that the single sample is accureate of what
other jobs are doing. Then the assignment is made, maximising
weighted speed up under another assumption that the future
performance will be the same as the single sample for each
thread.

The Second Strategy , called the Sample-avg assumes we need
multiple samples to get the average behaviour of a job on each
core. We run the threads atleast two times and the sampling is
done as many times the threads are run. The assignment then is
based on the average performance of each thread on each core.
This assignment is more consistent thread migration costs are
less.

The Third Strategy called the Sample-sched assumes we know
little about the particular assignment unless the thread is actually
run. Hence, it samples a number of possible assignments and
then is constrained to choose one of the the assignments that it
has sampled. Selection of the best core of those sampled is the
one that maximises total weighted speedup. It is experimentally
proven that the sample-sched approach gives the best
performance.

There is also the issue of how to trigger the assignments,
Sampling effectively requires reacting quickly to changes in the
workload and also minimising the sampling overhead. To
manage this tradeoff between the senstitivity to changes in the
workload and the effectiveness of the samepling, Two Trigger
Mechanisms are proposed based on a Periodic Timer and the
other based on events indicating significant changes in
performance.

Time triggered sampling is simple to implement and , it does not
capture either inter thread diversity of intra thread diversity.
Fixed sampling frequency may not be adequate when the phase
lengths of different applications in the workload mix are
different. Each application can demonstrate multiple phases
with different phase lengths and hence time triggered sampling
may not be useful for all applications.

The Second Class of Trigger Mechanisms monitor the run-time
behaviour of the workload and detect significant changes. Three
instantiations of this trigger class are considered.

Individual-event trigger is triggered every time the steady state
IPC of an individual thread changes by more than 50%.

Global-event trigger sums the absolute values of the percentage
changes in IPC for each application and the trigger is triggered
when the sum is 100%.

Bounded-global-event trigger modifies the global-event trigger
by initialting the a sampling phase if more than 300 million
cycles has elapsed since the last sampling phase. In other words
it samples every 300 cycles if there is no sampling that takes
place and avoiding triggering if the last sampling has been
triggered not more than 50 cycles ago.

The paper experiments with the three mechanisms and
concludes that the Bounded-global-event trigger performs better
than the others.

Thus dynamic assignment is possible by sampling performance
overtime and triggering the sampling at the right time.

4. Adaptive Mapping

The paper written by Chi-Keung Luk, Sunpyo Hong and
Hyesoon Kim introduces a heterogenous programming system
called Qilin. “In order for the software to fully realize this
potential, the step that maps the computation to processing
elements must be as automated as possible” According to the
paper. The general approach is to rely on the programmer to
specify this mapping manually and statically. This approach is
difficult and labor intensive. The method that is proposed called
Adaptive Mapping, a fully automatic technique to map
computations to processing elements on CPU+GPU. In order for
mainstream programmer to effectively work on the
heterogenous architecutures is to make the mapping of the
computations to the blocks must be as automated as possible.
Current CPU+GPU computation mapping. Qilin is based on the
Intel Threading building block(TBB) and The Nvidia CUDA
for the GPU. Instead of directly generating CPU and GPU native
machine codes, the Qilin compiler generates TBB and CUDA
source codes from Qilin programs on the fly. Qilin dynamic
compilation consists of four steps listed

1.Building Directed Acyclic Graph: DAG’s are build according
to the data dependencies. These DAG’s are essentially the
intermediate representation which later steps to compilation
process.

2.Deciding th Mappings from the Computations to processing
elements: This step uses automatic adaptive mapping to decide
the mapping.

3.Performing optimizations on DAG’s:Operation Coalescing
and removal of unnecessary temporary array are some of the
optimizations that can be performed in this step.

4. Code is Generated after the optimizations are performed once
all resource constraints are taken care of. Qilin also generates all
the gluing codes that are needed to combine results from the
CPU or the GPU.

The Actual adaptive mapping mechanism works as follows:

The Qilin adaptive mapping automatically finds the nearest
optimal mapping from computations to processing elements for
the given application. A program is run on both the CPU and the
GPU.

Tc¢ = Actual time of execution on the CPU.

Tg is the actual time to execute the given program on the GPU.
Tc = the Qilin projection of Tc
Tg = the Qilin projection of Tg

Tc and Tg are predicted by using a analytical table based on
static analysis. While this approach might not work very well for
complex programs. Qilin takes an empirical approach. Qilin
maintains a database that provides execution time projections
for all programs it has ever executed. The first time a program is
run is called a training run. Suppose the input problem size is
known, Qilin divides it into two parts. One part is mapped to
the CPU and the other part is mapped to the GPU. Within the
CPU it further divides the subpart into smaller sibparts and the
execution time is measured. The same is followed for the GPU.
Once all the execution times on CPU and GPU’s are available,
The projections for the actual execution times is constructed as
a linear equations using curve fitting. The next time a different
program is run, it uses the projections for the actual execution
times , it uses the projection values to determine the computaion
to processor mapping.

Thus, the Adaptive Mapping is an automatic technique to map
the computations to core on heterogenous multiprocessors.

2.HASS: A scheduler for Heterogenous Multicore
processors

The paper written by Daniel S Juan Carlos S. A and Stacy J
claims that single ISA multicore processors will have an edge in
potential performance per watt over comparable homogenous
processors. The OS scheduler needs to be aware of the
heterogenity of the processors. The paper proposes a hetrogenity
aware signature supported scheduling algorithm that does the
matching of the tasks to the core. Static nature of HASS imposes
some ,limitations on its structure and functionality.

To achieve this goal, the main thing that should be given focus
is the architecural signatures. HASS relies on the abilty to
estimate potential performance of a thread on a core given the
load characteristics of that core.

Constructing Signatures:An important propery of signatures is
their microarchitecture independence. The signature should be
available to the OS at the scheduling time. So the ideal place to
hold is the application binary itself. In order to construct the
signature we need the reuse distance profile which is collected
via offline profiling. All that needs to be done is execute the
program with the profiler that will generate the signature and
embed it into the binary. Several runs can be performed and the
results can be combined into one signature. Once the profile is
collected cache misses is estimated for realistic cache
configurations. These estimations collected in a matrix
comprises the architectural signature.

Using Created Signatures for Scheduling: At runtime the
architectural signature is used to estimate the threads
performance on each type of core. To accomplish this, two
separate parts are considered called the Execution time and the
stall time. Executing time is the amount of time it takes to
execute the instructions assuming a constant number of cycles
oer instruction. Constant memory latency is assumed and no
uniforam memory access latency may cause inaccuracy. The

resultant sum of both time compnents gives us an abstract
completion time metric.

The method also reflects on shared caches, the performance of
the shared caches is not only affected by the frequency of the
core and the properties of the application but also by the cache
access patterms. The performance of different threads on
differenct cores based on cores’ cache size and frequency. This
allows threads to distinguish Cores by their realtive desirabilty.

HASS scheduler: HASS scheduler stands for Heterogeneity-
Aware Signature Supported. The algorithm also emphasizes
scalabilty to accommodate more cores in the future. The first
abstraction made is called the processor class. Each processor is
said to be in one class based on the features such as clock
frequency, cache hieracrhy. If two cores belong to the same class
they must be identical. To be aheterogenous processor, the
system must have atleast two such classes, Each class or
partition keeps count of the runnable threads. Class and pratition
are no the same. If there are a large number of cores it becomes
hard to classify them into classes so the solution is t group them
in partitions in the CPU. Each class may have more than one
partition but wach partition must have the same class.

When threads enter the system, they iterate through all the
existing processor classes and estimate the performance using
signatures according to the attributes of the class. To assign itself
to a partition, the thread goes through the list of all the partitions
using the base rating and current number of runnable threads and
selects the partition with the highest expected performance and
assigns itself to it. This process is called Regular assignment.
When the number of threads in the partition changes it is called
a refresh. There is no load balancing between partitions and
more powerful partitions may get higher loads and some
partitions may get underloaded. This is prevented by forbiding
to move to fully loaded partition when there is a underloaded
partition available. The greedy approach has a potential problem
where threads may becomes locked in a suboptimal assignment
and there is a need for awap. This is achieved by optimistic
assignment. The intiator thread can only trigger the switch if it
sees that the swap will increase the overall performance. The
search for a partner can be slow when there are lots of partitions.

The partition scheme allows the scheduler to avoid global
lock during scheduling. Instead , threads can lock one partition
at a time during the refresh.

The paper claims that IPC-driven algorithm revealed that
IPC ratios were often inaccurate due to unstable nature of phase
changes. HASS is a novelty in using offline generated
architectural signatures for determining the threads assignments
in assymetric multicore processors.

C. Energy Efficient Techniques
1. Energy Metrics based Power Reductions.

This paper written by Rakesh K Keith I. and Norman P, Jouppi,
Parthasarathy R and Dean M T proposes a single-ISA
heterogenous multicore architecure as a mechanism to reduce
power consumption. As processors continue to increase in
performance and speed, processor power consumption and
dissipation are major challenges. This method tries to reduce
processor power dissipation. The architectures are mainly chip-

level multiprocessors and with multiple diverse cores. These
cores all execute the same instruction set but have different
perfoemance capabilities. The goals a previously discussed
could be power efficiency or execution speed ups. There are
many reasons why the best core of execution may change over
time. The demands of executing code may vary widely between
applications . The best core for a particular thread may not be
the best core for some other thread. Even s single application
may have multiple phases that may require different resources
for each phase. Although not all of these factors are considered
in any heuristic, this method specifically examines adaptation to
changes in the phases.

There is a cost to Switching cores, so we must do it
reasonably. This could either mean that we must restrict
switching only to operating system timeslice ontervals, with user
state already saved to memory and new core would then power
down the old core and return from the timer interrupt handler.

The Oracle Heuristic for dynamic core selection depend on
the particular goals of the architecure or application. The Oracle
Algorithm maximize two sample functions. The first optimizes
for energy efficiency. The second optimizes for energy-delay
product with a looser performance constraint. Choosing the Core
that minimizes energy or the energy-delay delay product over
each interval subject to performance constraints although
produce good results, it does not give an optimal solution for the
global energy or energy delay product.

Oracle based on Energy Metric

This seeks to minimize the energy per commited instruction and
thus energy used by the entire program. For each interval, the
oracle chooses the core that has the lowest energy consumption
under the constraint that the performance has to be always
maintained within 10% of the maximum performance.

Oracle based on Energy-Delay metric

The second Oracle utilises the energy-delay metric. The product
seeks to characterize the importance of both the energy and the
response time in a single metric. Under the assumption that they
have equal importance. This is achieved by minimising the
energy-delay product by always selecting the core that
maximises IPS*/Watt. The performance constraint being that
each core should maintains performance within 50% of the
maximum performing processor.This is different from Chip-
wide Voltage /Frequency scaling.

This paper also goes on to prove that dynamic core selection
mechanisms give more performance than static techniques.

Thus two energy efficient techniques are introduced based on
Energy metric and Energy-Delay Metrics are examined and this
widens the scope of utilising these Metrics for much Energy-
Efficiency.

2.Regression Model

This method proposed by Jason Cong and Bo Yuan proposes a
energy efficient scheduling methos as follows:

1. Aregression Model is developed to estimate the energy
consumption on Intel’s QuickIA heterogenous
prototype platform

2. An Energy-efficient scheduling approach is proposed
to map the program to eht most approporate core based
on th program phases using combinations of static
analysis and runtime scheduling.

The metric that is used to characterize the energy efficienty is
the energy delay product over instruction intervals. The method
uses Regression model to predict energy consumption. Training
data to train the model is developed to train the model. Some
benchmarks are run on the hardware and each time, fifteen
pieces of hardware performance is collected. With the training
data samples. The training data is we build and evaluate the
regression model. After identifying the hardware performance
parameters that are Cycles, Retired Instructions, L1 D cache
access and L2 D cache access, The total energy sonsumed is
calculated. Based on the Ordinary Least squared methods the
regression coefficients are determined.

The Program phases are identified in the same way as in the
Phase-guided threads assignment technique by using a call
graph.

The scheduling decision is made at runtime using the
instrumented codes. The correct energy delay products and the
regression model needs the four key hardware performance
parameters to accurately predict the energy consumption.

Thus, In the paper an energy efficient scheduling method for
heterogenous multicore architectures is proposed . Regression
model is used to estimate the energy consumption.

V.

The survey gives the idea that thread assignment policies
although many, may finally be classified into 3 functional
categories depending upon how they operate. The first Category
tries to implement a thread guiding mechanism based on the
Phases of the program and the change in the phases or simply
analysing the code offline. This is done by a mechanism that
learns and categorizes the threads to be assigned accordingly.
The other main goal that is achieved which is power
conservation is either done by decreasing the Voltage/frequency
of the core called Voltage Scaling or the processor thus
conserving energy or by offline analysis of the energy
consumption of the code or energy metrics such as energy delay
metric dynamcally. The offline analysis is either based on a
profiler or a learning mechanism that learns the phases or
analyses the program determines the workload metrics and
assignments are made accordingly.

CONCLUSION

Thread
Assignment
Techniques
|
[I I |
Energy Metric
Based

Fixed IPC driven Program based

Figure 5: Simplified Taxonomy

10

The Performance which is either to improve the throughput
and the Energy Conservation per core or for the whole CMP is
achieved by

1. Core Switching
Threads migrate from one core to another and the
efficient thread migration techniques are used to
switch between cores depending upon the resource
demands of the thread.

2. Voltage Scaling: Voltage/frequency is scaled down to
run a thread for much longer time and hence make all
the cores finish at the same time making sure no core
is idle.

3. Core Dormant States: If there is no workload
assigned to a core, the core is put into dormant state
and is switched between dormant and active states
accordingly.

ACKNOWLEDGMENT

I thank Professor Soner Onder, from the bottom of my heart
for helping me throughout the process of writing this paper, for
complete walk through of how the paper needs to be written,
Even for sparing time out of his busy schedule to review and
help draft the paper. I sincerely thank professor Onder for this
wonderful learning experience. I feel privileged to have sat in
his class as a student.

REFERENCES

[1] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy
Ranganathan, and Dean M. Tullsen. 2003. Single-ISA Heterogeneous
Multi-Core Architectures: The Potential for Processor Power Reduction.
In Proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 36). IEEE Computer

Society, Washington, DC, USA, 81-.

Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P.
Jouppi, and Keith I. Farkas. 2004. Single-ISA Heterogeneous Multi-Core
Architectures for Multithreaded Workload Performance. In
Proceedings of the 31st annual international symposium on
Computer architecture (ISCA '04). IEEE Computer Society,
Washington, DC, USA, 64-.

Daniel Shelepov, Juan Carlos Saez Alcaide, Stacey Jeffery, Alexandra
Fedorova, Nestor Perez, Zhi Feng Huang, Sergey Blagodurov, and Viren
Kumar. 2009. HASS: a scheduler for heterogeneous multicore systems.
SIGOPS Oper. Syst. Rev. 43, 2 (April 2009), 66-75.
DOI=http://dx.doi.org/10.1145/1531793.1531804

Tyler Sondag and Hridesh Rajan. 2009. Phase-guided thread-to-core
assignment for improved utilization of performance-asymmetric multi-
core processors. In Proceedings of the 2009 ICSE Workshop on
Multicore Software Engineering (IWMSE '09). IEEE Computer
Society, Washington, DC, USA, 73-80.
DOI=http://dx.doi.org/10.1109/ITWMSE.2009.

R. Rakvic, Q. Cai, J. González, G. Magklis, P. Chaparro, and A.
González. 2010. Thread-management techniques to maximize
efficiency in multicore and simultaneous multithreaded microprocessors.
ACM Trans. Archit. Code Optim. 7, 2, Article 9 (October
2010), 25 pages. DOI=http://dx.doi.org/10.1145/1839667.

(2]

[3]

(4]

[3]

(6]

(7]

(8]

Michela Becchi and Patrick Crowley. 2006. Dynamic thread assignment
on heterogeneous multiprocessor architectures. In Proceedings of
the 3rd conference on Computing frontiers (CF '06). ACM, New
York, NY, USA, 29-40.
DOI=http://dx.doi.org/10.1145/1128022.1128029

Jian-Jia Chen and Lothar Thiele. 2010. Energy-efficient scheduling on
homogeneous multiprocessor platforms. In Proceedings of the
2010 ACM Symposium on Applied Computing (SAC '10). ACM,
New York, NY, USA, 542-549.
DOI=http://dx.doi.org/10.1145/1774088.1774198

Susanne Albers, Fabian Müller, and Swen Schmelzer. 2007. Speed
scaling on parallel processors. In Proceedings of the nineteenth
annual ACM symposium on Parallel algorithms and architectures
(SPAA '07). ACM, New York, NY, USA, 289-298.
DOI=http://dx.doi.org/10.1145/1248377.1248424

11

]

[10]

(1]

Jason Cong and Bo Yuan. 2012. Energy-efficient scheduling on
heterogeneous multi-core architectures. In Proceedings of the 2012
ACM/IEEE international symposium on Low power electronics and
design (ISLPED '12). ACM, New York, NY, USA, 345-350.
DOI=http://dx.doi.org/10.1145/2333660.2333737

Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. 2009. Qilin: exploiting
parallelism on heterogeneous multiprocessors with adaptive mapping. In
Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 42). ACM, New York,
NY, USA, 45-55. DOI=http://dx.doi.org/10.1145/1669112.1669121

Robert 1. Davis, Alan Burns, Jose Marinho, Vincent Nelis, Stefan M.
Petters, and Marko Bertogna. 2015. Global and Partitioned
Multiprocessor Fixed Priority Scheduling with Deferred Preemption.
ACM Trans. Embed. Comput. Syst. 14, 3, Article 47 (April
2015), 28 pages. DOI=http://dx.doi.org/10.1145/2739954

