
Abstract.

Polyphase codes derived from linear-frequency-modulation (LFM), such as P3 code and P4 code, 

are a useful class of pulse compression waveforms. The general Polyphase codes such as Frank 

code, P1 code , P2 code, P3 code and Bi-phased Barker code is discussed along with their peak 

side-lobe level (PSL) and Integrated Sidelobe level(ISL). This thesis  also discusses and compares 

the pulse compression performance including peak side-lobe level (PSL) and signal-to-noise ratio 

(SNR)  loss  of  P4  code  under  different  side-lobe  suppression  methods.  Different  windowing 

techniques such as Rectangular window , Hann Window, Hamming window, Kaiser window for 

different  ß  values  are  discussed  and  analysed  using  P4  code.  Two  new  methods  including 

mismatch  filter  design  based  on  second-order  cone  programming  and  optimal  design  method 

combined arbitrary phase codes with mismatch filter optimization are introduced. It was shown 

that, the mismatch filter based on second order cone programming result in low PSL and very low 

SNR loss,  the higher the mismatch filter  order is,  the lower the PSL we can get.  The design 

method combined arbitrary phase codes with mismatch filters optimization result in the lowest 

PSL, the lowest SNR loss and the highest range resolution in these methods.
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1.INTRODUCTION 

RADAR is an acronym of Radio Detection And Ranging. It is an object-detection system which 

uses electromagnetic waves specifically radio waves to determine the range, altitude, direction or 

speed of both moving and fixed objects such as aircraft ,ships, spacecraft ,guided missiles ,motor 

vehicles, weather formations, and terrain. The radar dish, or antenna, transmits pulses of radio 

waves or microwaves which bounce off any object in their path. The object returns a tiny part of 

the wave's energy to a dish or antenna which is usually located at the same site as the transmitter. 

The modern uses of radar are highly diverse, including air traffic control, radar astronomy, and 

aircraft anti-collision systems, antimissile.  

The rapid advances in digital technology made many theoretical capabilities practical with digital 

signal processing and digital data processing. Radar signal processing is defined as the 

manipulation of the received signal, represented in digital format, to extract the desired 

information whilst rejecting unwanted signals. Pulse compression allowed the use of long 

waveforms to obtain high energy simultaneously achieves the resolution of a short pulse by 

internal modulation of the long pulse. The resolution is the ability of radar to distinguish targets 

that are closely spaced together in either range or bearing. The internal modulation may be binary 

phase coding, polyphase coding, frequency modulation, and frequency stepping. There are many 

advantages of using pulse compression techniques in the radar field. They include reduction of 

peak power, relevant reduction of high voltages in radar transmitter, protection against detection 

by radar detectors, significant improvement of range resolution, relevant reduction in clutter 

troubles and protection against jamming coming from spread spectrum action .  

In pulse compression technique, the transmitted signal is frequency or phase modulated and the 

received signal is processed using a specific filter called "matched filter". In this form of pulse 

compression, a long pulse of duration T is divided into N sub pulses each of width τ. The phase of 

each sub-pulse is chosen to be either 0 or π radians. A matched filter is a linear network that 
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maximizes the output peak-signal to noise ratio of a radar receiver which in turn maximizes the 

detectability of a target. In 1950-60, the practical realization of radars using pulse compression has 

taken place. At the starting, the realization of matched filters was difficult using traverse filters 

because of lack of delay line with enough bandwidth. Later matched filters have been realized by 

using dispersive networks made with lumped-constant filters. In recent years, instead of matched 

filters, many sophisticated filters are in use.  

The binary choice of 0 or π phase for each sub-pulse may be made at random. However, some 

random selections may be better suited than others for radar application. One criterion for the 

selection of a good “random” phase-coded waveform is that its autocorrelation function 

should have equal time side-lobes.Barker codes have called perfect codes because the highest 

sidelobe is only one code element amplitude high.However,the largest pulse compression ratio that 

can be obtained with barker code is only 13.  

The codes that use any harmonically related phases on certain fundamental phase increments are 

called polyphase codes. Frank proposed a polyphase code called as Frank code which is more 

Doppler tolerant and has lower sidelobes than binary codes. Krestschmer and Lewis have 

presented the variants of Frank code. P1 code which is derived from step frequency, Bolter matrix 

derived P2 code and linear frequency derived P3 and P4 codes. The significant advantage of P1 

and P2 codes over the Frank code and the P4 code over P3 is that they are tolerant to receiver band 

limitations.  
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1.2. Motivation  

The pulse compression in radar has major applications in the recent years. For better pulse 

compression, peak signal to sidelobe ratio should be as high as possible so that the unwanted 

clutter gets suppressed and should be very tolerant under Doppler shift conditions. Many pulse 

compression techniques have come into existence including neural networks. Most of the 

waveforms used for pulse compression generate random, noise-like sidelobe patterns, which make 

them hardly practical for sidelobe cancellation, the uniform sidelobe patterns of the Woo filter are 

promising for such a scheme.Conventional sidelobe reduction techniques have suffered from 

performance degradation and SNR gains so asymmetrical weighting receivers can be use in such 

cases because they keep the sidelobe levels uniformly flat over all time delays while the range 

resolution loss is prevented . The study of polyphase codes and their sidelobe reduction techniques 

are carried out since the polyphase codes have low sidelobes and are better Doppler tolerant and 

better tolerant to pre- compression bandlimiting.  
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1.3. Thesis Organization  

Module-1 Introduction  
Module-2 Polyphase Codes  

This chapter deals with the introduction of Bi-phase codes and their limitations and different 

polyphase codes such as Frank, P1, P2, P3, P4 and complementary codes. The study of these 

codes, properties and their advantages over bi-phase codes is described  

Module-3 Conventional Sidelobe Reduction techniques for polyphase codes  

This chapter deals with the different Conventional sidelobe reduction techniques such as 

Amplitude weighting using different windows, and an optimal technique for uniform range 

sidelobe and reduction of ISL. The study of these techniques and their properties are carried out.  

Module-4 Sidelobe suppression Using second Order Cone Programming 

This chapter describes the Optimisation filter concept of sidelobe reduction, the advanced versions 

of Second order Cone Programming Optimzation filters and a proposed pulse compression 

technique is described.  

Module-5 Conclusion and scope for future work  

The concluding remarks for all the chapters are presented in this chapter. It also contains some 

future research topics which need attention and further investigation.  

Appendix: Matlab code to simulate the results 
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Module 2  

Polyphase Codes  
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2.1. Introduction  

Radar is an electromagnetic system for detection and location of objects such as aircraft, ships, 

spacecraft, vehicles, people and natural environment [2.1]. It operates by radiating energy into 

space and detecting the echo signal reflected from object or target. The reflected energy that is 

returned to the radar not only indicates the presence of the target, but by comparing the received 

echo signal with the signal that was transmitted, its location can be determined along with other 

target-related information.  

The basic principle of radar is simple. A transmitter generates an electro-magnetic signal (such as 

a short pulse of sine wave) that is radiated into space by an antenna. A portion of the transmitted 

signal is intercepted by a reflecting object (target) and is re-radiated in all directions. It is the 

energy re-radiated in back direction that is of prime interest to the radar. The receiving antenna 

collects the returned energy and delivers it to a receiver, where it is processed to detect the 

presence of the target and to extract its location and relative velocity. The distance to the target is 

determined by measuring the time taken for the radar signal to travel to the target and back. The 

range is  

                                                  R=CTR/2  ;                                                                            (2.1)  

Where TR is the time taken by the pulse to travel to target and return, c is the speed of propagation 

of electromagnetic energy. Radar provides the good range resolution as well as long detection of 

the target.  

The most common radar signal or waveform is a series of short duration, somewhat rectangular-

shaped pulses modulating a sine wave carrier. Short pulses are better for range resolution, but 

contradict with energy, long range detection, carrier frequency and SNR. Long pulses are better 

for signal reception, but contradict with range resolution and minimum range. At the transmitter, 

the signal has relatively small amplitude for ease to generate and is large in time to ensure enough 
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energy in the signal. At the receiver, the signal has very high amplitude to be detected and is small 

in time .  

A very long pulse is needed for some long-range radar to achieve sufficient energy to detect small 

targets at long range. But long pulse has poor resolution in the range dimension. Frequency or 

phase modulation can be used to increase the spectral width of a long pulse to obtain the resolution 

of a short pulse. This is called “pulse compression”.  

2.2. Pulse Compression  

The term radar signal processing incorporates the choice of transmitting waveforms for various 

radars, detection theory, performance evaluation, and the circuitry between the antenna and the 

displays or data processing computers. The relationship of signal processing to radar design is 

analogous to modulation theory in communication systems. Both fields continually emphasize 

communicating a maximum of information in a special bandwidth and minimizing the effects of 

interference.  

Although the transmitted peak power was already in megawatts, the peak power continued to 

increase more and more due to the need of longer range detection. Besides the technical limitation 

associated with it, this power increase poses a financial burden. Not only that, target resolution and 

accuracy became unacceptable. Siebert  and others pointed out the detection range for given radar 

and target was dependent only on the ratio of the received signal energy to noise power spectral 

density and was independent of the waveform. The efforts at most radar laboratories then switched 

from attempts to construct higher power transmitters to attempts to use pulses that were of longer 

duration than the range resolution and accuracy requirements would allow.  

Increasing the duration of the transmitted waveform results in increase of the average transmitted 

power and shortening the pulse width results in greater range resolution. Pulse compression is a 
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method that combines the best of both techniques by transmitting a long coded pulse and 

processing the received echo to get a shorter pulse.  

The transmitted pulse is modulated by using frequency modulation or phase coding in order to get 

large time-bandwidth product. Phase modulation is the widely used technique in radar systems. In 

this technique, a form of phase modulation is superimposed to the long pulse increasing its 

bandwidth. This modulation allows discriminating between two pulses even if they are partially 

overlapped. Then upon receiving an echo, the received signal is compressed through a filter and 

the output signal will look like the one. It consists of a peak component and some sidelobes.  

2.3. Matched filter  

A matched filter is a linear network that maximises the output peak-signal to noise (power) ratio of 

a radar receiver which in turn maximizes the detectability of a target. It is obtained by correlating a 

known signal, or a template, with an unknown signal to detect the presence of the template in the 

unknown signal. This is equivalent to convolving the unknown signal with a conjugated time-

reversed version of the template. It is the optimal linear filter for maximizing the signal to noise 

ratio (SNR) in the presence of additive stochastic noise. It has a frequency response function 

which is proportional to the complex conjugate of the signal spectrum.  

H(f) =  Ga S*(f) exp(-j2πf tm)                                                (2.2)  

Where Ga is a constant, tm is the time at which the output of the matched filter is a maximum 

(generally equal to the duration of the signal), and S*(f) is the complex conjugate of the spectrum 

!9



of the (received) input signal s(t), found from the Fourier transform of the received signal s(t) such 

that  

             S(f)  =  
-∞
∫
∞

S(t)exp(-j2πft)dt      (2.3) 

A matched filter for a transmitting a rectangular shaped pulse is usually characterized by a 

bandwidth B approximately the reciprocal of the pulse with τ or Bτ ≈ 1. The output of a matched 

filter receiver is the cross-correlation between the received waveform and a replica of the 

transmitted waveform [2.5]  

2.4. Phase coded pulse compression  

In this form of pulse compression, a long pulse of duration T is divided into N sub- pulses each of 

width τ as shown in Figure 2.2. An increase in bandwidth is achieved by changing the phase of 

each sub-pulse. The phase of each sub-pulse is chosen to be either 0 or π radians or they can be 

harmonically related. The output of the matched filter will be a spike of width τ with an amplitude 

N times greater than that of long pulse. The pulse compression ratio is N = T/τ ≈ BT, where B ≈ 1/

τ = bandwidth. The output waveform extends a distance T to either side of the peak response, or 

central spike. The portions of the output waveform other than the spike are called time side-lobes. 

Phase coding can be either binary phase coding or polyphase coding.  

2.4.1. Binary phase codes  

The binary choice of 0 or π phase for each sub-pulse may be made at random. However, some 

random selections may be better suited than others for radar application. One criterion for the 

selection of a good “random” phase-coded waveform is that its autocorrelation function should 
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have equal time sidelobes [2.1]. The binary phase-coded sequence of 0, π values that result in 

equal side-lobes after passes through the matched filter is called a Barker code. An example is 

shown in Figure 2(a). This is a Barker code of length 13. The (+) indicates 0 phase and (−) 

indicates π radians phase. The auto-correlation function, or output of the matched filter, is shown 

in Figure 2(b). There are six equal time side-lobes to either side of the peak, each of label 22.3 dB 

below the peak. The longest Barker code length is 13. The barker codes are listed in Table 2.1. 
When a larger pulse-compression ratio is desired, some form of pseudo random code is usually 

used. To achieve high range resolution with-out an incredibly high peak power, one needs pulse 

compression.  

                                       Fig 2.1    Barker Code Autocorrelation Output    
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Barker codes have been called the perfect codes because the highest sidelobe is only one code 

element amplitude high. However, the largest pulse compression ratio that can be obtained with 

the barker codes only . The sidelobe levels obtained with the polyphase codes are not limited to 

any finite pulse compression ratio and exhibit better Doppler tolerance for broad range-Doppler 

coverage than do the biphase codes, and they exhibit relatively good sidelobe characteristics. 

2.5 Polyphase codes  

The codes that use any harmonically related phases based on a certain fundamental phase 

increment are called Polyphase codes and these codes are derived conceptually coherently 

detecting a frequency modulation pulse compression waveform with either a local oscillator at the 

band edge of the waveform (single side band detection) or at band center (double sideband 

detection) and by sampling the resultant inphase I and Q data at the Nyquist rate. The Nyquist rate 

in this case is once per cycle per second of the bandwidth of the waveform [2.8].  

Frank proposed a polyphase code with good non-periodic correlation properties and named the 

code as Frank code [2.9]. Kretscher and Lewis proposed different variants of Frank polyphase 

codes called p-codes which are more tolerant than Frank codes to receiver bandlimiting prior to 

pulse compression [2.10, 2.11]. Lewis has proven that the sidelobes of polyphase codes can be 

substantially reduced after reception by following the autocorrelation with two sample sliding 

window subtractor for Frank and P1 codes and for P3 and P4 codes.  

Polyphase compression codes have been derived from step approximation to linear frequency 

modulation waveforms (Frank, P1, P2) and linear frequency modulation waveforms (P3, P4). 
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These codes are derived by dividing the waveform into subcodes of equal duration, and using 

phase value for each subcode that best matches the overall phase trajectory of the underlying 

waveform. In this section the polyphase codes namely Frank, P1, P2, P3, P4 codes and their 

properties are described.  

2.5.1. Frank Code  

The Frank code is derived from a step approximation to a linear frequency modulation waveform 

using N frequency steps and N samples per frequency [2.9]. Hence the length of Frank code is N
2
. 

The Frank coded waveform consists of a constant amplitude signal whose carrier frequency is 

modulated by the phases of the Frank code.  

The phases of the Frank code is obtained by multiplying the elements of the matrix A by phase 

(2π/N) and by transmitting the phases of row1 followed by row 2 and so on.  

The phase of the ith code element in the jth row of code group is computed as  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Where i and j ranges from 1 to N. For example, the Frank code with N = 4, by taking phase value 

modulo 2 % is given by the sequence,  

  

The autocorrelation function under zero Doppler and the phase values of Frank code with length 

100 are given in Figure 2.2 . 

 

Fig  2.2a  

             

                   

!14



 Fig 2.2b        

(Figure 2.2) Frank Code for length 100 (a) Autocorrelation under zero Doppler shift (b) phase plot 

From the above figure it is evident that the Frank code has the largest phase increments from 

sample to sample in the centre of the code. Hence, when the code is passed through a bandpass 

amplifier in a radar receiver, the code is attenuated more in the centre of the waveform. This 

attenuation tends to increase the sidelobes of the Frank code ACF. Hence it is very intolerant to 

precompression bandlimiting. But comparing with binary phase codes, the Frank code has a peak 

sidelobe level (PSL) ratio of -29.79dB which is approximately 10 dB better than the best 

pseudorandom codes.  

In the presence of Doppler shift, the autocorrelation function of Frank codes degrades at much 

slower rate than that for binary codes, however the peak shifts in position rapidly and a range error 

occurs due to this shift. The correlation under Doppler frequency fd is obtained by correlating the 

transmitted one with received one multiplied by  exp(-j2πft)  , where T is the length of the code. 

The PSL value under Doppler of 0.05 is calculated as -8.42dB.  
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2.5.2. P1 Code  

The P1, P2, P3, P4 codes are obtained by the modified versions of the Frank code, with the dc 

frequency term in the middle of the pulse instead of at the beginning. P1 code is derived by 

placing the synchronous oscillators at the centre frequency of the step chirp IF waveform and 

sampling the baseband waveform at the Nyquist rate. 

   The P1 code has N
2 

elements and the phase of ith element of the jth group is represented as  

 

              

Where the integers i and j ranges from 1 to N. For example, the P1 code with N = 4, by taking 

phase value modulo 2π is given by the sequence,  

 

The autocorrelation function and the phase values of P1 code with length 100 are given in Figure 

2.3. The PSL value is obtained as -23.99dB. P1 code has the highest phase increments from 

sample to sample at the two ends of the code. Thus, when waveforms phase coded with these 

codes are passed through band pass amplifiers in a radar receiver, P1 code is attenuated most 
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heavily at the two ends of the waveform. This reduces the sidelobes of the P1 code autocorrelation 

function. Hence this exhibits relatively low sidelobes than Frank code. This result shows that P1 

code is very pre-compression bandwidth tolerant than Frank code.  

Also, P1 code has an autocorrelation function magnitude which is identical to the Frank code for 

zero Doppler shifts.  

Fig 2.3a 

Fig 2.3b 
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Fig 2.3c 

Figure 2.3. P1 Code for length 10 (a) its Autocorrelation (b) its phase  and magnitude plots (c) 

Power Spectrum 

2.5.3. P2 Code  

The P2 code has the same phase increments within each phase group as the P1 code, except that 

the starting phases are different . The P2 code has N
2 

elements and the phase of ith element of the 

jth group is represented as  

Where i and j are integers ranges from 1 to N.The value of N should be even in order to get low 

autocorrelation sidelobes. An odd value of N results in high autocorrelation sidelobes. 
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For example, the P2 code with N = 4, by taking phase value modulo 2 % is given by the sequence,  

         

     

The autocorrelation function under zero Doppler,and the phase values of P2 code with length 

100are given in Figure 2.4.                         

 Fig 2.4a 

The peak sidelobes of the P2 code are the same as the Frank code for zero Doppler case and the 

mean square sidelobes of the P2 code are slightly less 
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Fig 2.4b 

 Fig 2.4 c 

Fig 2.4(a)Autocorrelation (b) Phase Values of P2 code (c) Power spectrum of  P2 code , on length 

N=100; 

The peak sidelobes of the P2 code are the same as the Frank code for zero Doppler case and the 

mean square sidelobes of the P2 code are slightly less. The value of PSL obtained as -29.79dB 
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which is same as that of Frank code.. The phase changes in P2 code are largest towards the end of 

the code.  

The significant advantage of the P1 and P2 codes over the Frank code is that they are more 

tolerant of receiver band limiting prior to pulse compression. But P1 and P2 suffers from high PSL 

value. PSL value is obtained by the ratio of peak sidelobe amplitude to the main lobe amplitude. 

To obtain low PSL values, we go for P3 and P4 codes.  

2.5.4. P3 Code  

The P3 code is conceptually derived by converting a linear frequency modulation waveform to 

baseband using a local oscillator on one end of the frequency sweep and sampling the inphase I 

and quadrature Q value at the Nyquist rate . Letting the waveform to be coherently detected have a 

pulse length T and frequency  

fo=f +kt                                                                    2.9                                      

Where k is a constant, the bandwidth of the signal will be approximately  

B=kT                                                                      2.10 

This bandwidth will support a compressed pulse length of approximately  

        tc=1/B                                                                     2.11 

And the waveform will provide a pulse compression ratio of  

 δ = T/ tc                                                                    2.12 
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Assuming that the first sample of I and Q is taken at the leading edge of waveform, the phases of 

successive samples taken tc apart is  

Thus the phase sequence of the P3 signal is given by  

Where % varies from 1 to N and N is the compression ratio. For example, the P3 code with N = 16, 

by taking phase value modulo 2π  is given by the sequence,  

It is thus said to have derived by converting a linear frequency modulation waveform to baseband 

using a local oscillator on one end of the frequency sweep and sampling the inphase I and 

quadrature Q value at the Nyquist rate. 
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Fig 2.5a 

Fig 2.5b 

Fig 2.5 (a) P3 phase values (b) Power Spectrum of code length 100 
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2.5.5. P4 Code  

The P4 Code is conceptually derived from the same waveform as the P3 Code[2.10,2.11]. 

However, in this case, the local oscillator frequency is set equal to fo=f +kT/2  in the I,Q   

detectors. With the frequency, the phases of successive samples taken tc apart are tc apart are 

             

             

              

Thus the phase sequence of the P4 signal is given by:  
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Where % varies from 1 to N and N is the compression ratio. For example, the P4 code with N = 16, 

by taking phase value modulo 2 % is given by the sequence,  

 

Fig 2.6(a),  phase values of P4 code of length 100 
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The Power spectrum is obtained as shown below for code of length 100. The PSL value is 

obtained as - 26.32dB under zero Doppler, which is similar to P3 code.  

Fig 2.6(b) Power spectrum of P4 code of length 100 

Thus the P4 code is more precompression bandwidth limitation tolerant but has same Doppler 

tolerance than the P3 code. This follows since precompression bandwidth limitations average the 

code phase increments and would attenuate the P4 code on the ends and the P3 code in the middle. 

The former increases the peak-to-sidelobe ratio of the compressed pulse while the latter decreases 

it.  
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2.6. Summary  

In this chapter, Phase coded pulse compression, Binary phase codes, and polyphase codes are 

described. The performances of polyphase codes namely Frank, P1, P2, P3, P4 codes, their 

autocorrelation properties, their phase values and their properties under Doppler shift conditions 

are discussed.  
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Module 3  

Conventional Sidelobe Reduction 

Techniques for Polyphase Codes  
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3.1 Range Time Sidelobes  

Sidelobes are unwanted because a time sidelobe of a strong echo may hide a weaker target return. 

Also any clutter present in the sidelobes can leak into range of interest. Most of the energy will be 

wasted in the sidelobes .Hence detection becomes weaker.[3.1] Range-time sidelobes are the result 

of convolving the radar return with the non-ideal filter response (i.e. some energy remains outside 

the desired pulse bandwidth), This results in the “blurring” of returns in range near high 

reflectivity gradients, like ground clutter.  

3.2 Performance measures  

The performance measures of Pulse Compression techniques are Peak side level (PSL), integrated 

sidelobe (ISL), SNR loss and Doppler shift.  

3.2.1. Peak Sidelobe Ratio  

It is the ratio of the maximum of the sidelobe amplitude to mainlobe amplitude. It measures the 

highest sideline level next to the mainline level and thus the ratio gives us an idea of how bid the 

sidelobe is in comparison to the mainlobe[3.1]  
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3.2.2. Integrated sidelobe ratio  

It the ratio of the energy of Autocorrelation function of sidelobes to the total energy of the 

Autocorrelation function of the mainlobe [3.2].  

3.2.3. SNR Degradation  

SNR degradation per dB is the ratio of mainlobe peak amplitude without Doppler shift to 

mainlobe peak amplitude with Doppler shift.  

 

!30



3.3 Weighting Techniques for Polyphase Codes  

There will be significant reduction in sidelobes and PSL values by implementing time weighting 

function to the signal code. This sidelobe reduction technique can be analysed in two ways, one is 

matched weighting with weighting window at the transmitter and the receiver and two is 

mismatched weighting, where amplitude weighting is performed only at receiver site [3.4]. In this 

section, simulations are done using mismatched weighting. The tradeoff in reducing the PSL is a 

spreading of the peak value of the compressed pulse, or mathematically the autocorrelation (ACF) 

function, resulting in a loss in resolution similar to that of a chirp waveform. The greater the 

amplitude taper, for example a %  % weighting as n is raised to a higher power, the narrower the 

bandwidth and hence the wider the compressed pulse. Also, there is a loss in s/n similar to the 

weighted chirp waveform. Good Doppler tolerance is maintained with these weightings, especially 

with the Taylor weighting. However, in contrast the sidelobes decrease as the number of P4 code 

elements increase.  

In this section, Kaiser-Bessel time weighting function is analysed due to β parameter and its 

influence on sidelobe suppression and efficiency in Doppler shift domain, as well. The PSL and 

integrated sidelobe level (ISL) values are compared for different weighting functions such as 

Kaiser-Bessel, hamming, hanning, Blackman etc.  

3.3.1. Hamming Window  

Hamming window belongs to the family of raised cosine windows. The window is optimized to 

minimize the maximum (nearest) sidelobe, giving it a height of about one-fifth that of the Hann 

window, a raised cosine with simpler coefficients. The coefficients of a Hamming window are 

computed from the following equation[3.4].  

W(n) = 0.54 - 0.46cos(2πn/N) , 0≤n≤N                                                  3.4 
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Fig 3.1  100 Point Hamming Window  

The 100- point hamming code is shown in Figure 3.1.  

3.3.2. Rectangular Window  

The rectangular window is sometimes known as a Dirichlet window. It is the simplest window, 

taking a chunk of the signal without any other modification at all, which leads to discontinuities at 

the endpoints (unless the signal happens to be an exact fit for the window length, as used in multi 

tone testing, for instance).[3.5] The first side-lobe is only 13 dB lower than the main lobe, with the 

rest falling off at about 6 dB per octave.  

    W(n) = 1         3.5   
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Fig 3.2 100 point Rectangular Window. 

3.3.3. Hann Window  

The Hann and Hamming windows, both of which are in the family known as "raised cosine" 

windows, are respectively named after Julius von Hann and Richard Hamming. The term 

"Hanning window" is sometimes used to refer to the Hann window [3.6, 3.7]. While the Hanning 

window does a good job of forcing the ends to zero, it also adds distortion to the wave form being 

analyzed in the form of amplitude modulation; i.e., the variation in amplitude of the signal over 

the time record. Amplitude Modulation in a wave form results in sidebands in its spectrum, and in 

the case of the Hanning window, these sidebands, or sidelobes as they are called, effectively 

reduce the frequency resolution of the analyzer by 50%. The advantage of the Hann window is 

very low aliasing, and the tradeoff is slightly decreased resolution (widening of the main lobe).  
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Fig 3.3  100 point Hann Window 

3.3.4. Blackman Window  

The Blackman window is quite similar to Hann and Hamming window, but it has one additional 

cosine term to further reduce the ripple ratio. Blackman windows have slightly wider central lobes 

and less sideband leakage than equivalent length Hamming and Hann windows.  

The coefficients of a Hann window are computed from the following equation : 

W(n) = a0  - a1 cos(2πn/N-1) + a2 cos(2πn/N-1)                                        3.6 

       a0   = (1- ß) /2   ;           a1=1/2;             a2=ß/2; 
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Fig 3.4 100 point Blackman Window 

By common convention, the unqualified term Blackman window refers to α=0.16.  

3.3.5. Kaiser-Bessel Window  

For a Kaiser-Bessel window of a particular length N, the parameter β controls the sidelobe height 

and it affects the sidelobe attenuation of the Fourier transform of the window. This parameter also 

trades off main lobe width against sidelobe attenuation[3.7]. The Kaiser- Bessel window in 

sampled version with β is computed as follows : 
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Where I0 is the zeroth order modified Bessel function of the first kind, β is an arbitrary real 

number that determines the shape of the window, N is the length of the window. The design 

formula that is used to calculate β parameter value due required a sidelobe level. 

Where α is sidelobe level in decibels. As β increases, the main lobe width widens and the sidelobe 

attenuation increases. For β = 0, the Kaiser-Bessel window is a rectangular window. For β= 5.44, 

the Kaiser-Bessel window is close to the Hamming window. Typically, the value of β is in the 

range from four to eight and for a given parameter, the sidelobe height is fixed with respect to 

window length [3.5, 3.6]. For any given window, the signal-to-noise loss (SNR loss) can 

calculated by the formula: 

Fig 3.5 100 point Kaiser window of Beta= 4.56; 
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Fig 3.6 , 100 Point Kaiser window of  Beta = 7; 

 For any given window, the signal-to-noise loss (SNR loss) can calculated by the formula: 
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3.5.6. Simulation Results and Discussion  

All window functions discussed above are applied as sidelobe reductiontechniques for P4 code.  

Fig 3.7 P4 ACF of Rectangular window 
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Fig 3.8 P4 ACF of Hann window 

 

Fig 3.6 P4 ACF of Hamming Window 
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Fig 3.7 P4 ACF of Kaiser Bessel window  

Table 1 :Performance of P4 code 

WIndow Name Peak Side 
Lobe level(dB)

Integrated Sidelobe 
Level

SNR loss

Hann -39.69 -19.990 1.2935

Hamming -37.29 -19.731 1.8046

Blackman -38.24 -19.825 1.3758

Kaiser(beta=2) -26.48 -15.445 2.416

Kaiser(beta=3) -30.18 -17.738 0.57735

Kaiser(beta=4) -34.31 -19.190 0.98957
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3.6. Summary  

A detailed structure of sidelobes is discussed and different sidelobe reductions techniques outputs 

for P4 code are explained in detail and proved that this technique reduces the PSL value. In order 

to reduce the PSL values further, weighting techniques are employed. The Hamming and Kaiser 

Bessel windowing functions are studied and their effects to P4 code under Doppler of 0 a are 

discussed.  
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Chapter 4  

Sidelobe Suppression filter based on 
Second Order Cone Programming  
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4.1 Convex Optimization 

A convex optimization is one of the form 

                 minimize fo(x) 

      subject to fi(x) ≤ bi,  i= 1,…,m 

where the functions of,…fm: Rn → R are convex, i.e satisfy  fi(αx+ßy) ≤ αfi(x) + ß fi(y) 

for all x, y ∈Rn and all α, β∈R with α+β= 1,α≥0,β≥0. The least-squares problem  and linear 

programming problem  are both special cases of the general convex optimisation problem. 

4.2 Using convex optimization 

Using convex optimization is, at least conceptually, very much like using least squares or linear 

programming. If we can formulate a problem as a convex optimization problem, then we can solve 

it efficiently, just as we can solve a least squares problem efficiently. With only a bit of 

exaggeration, we can say that, if you formulate a practical problem as a convex optimization 

problem, then you have solved the original problem. There are also some important differences. 

Recognizing a least-squares problem is straightforward, but recognizing a convex function can be 

difficult. In addition,there are many more tricks for transforming convex problems than for 

transforming linear programs.  Recognizing convex optimization problems, or those that can be 

transformed to convex optimization problems, can therefore be challenging. Once the skill of 

recognizing or formulating convex optimization problems is developed, you will find that 

surprisingly many problems can be solved via convex optimization. 
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The challenge, and art, in using convex optimization is in recognizing and formulating the 

problem. Once this formulation is done, solving the problem is, like least-squares or linear 

programming, (almost) technology 

4.3 Nonlinear optimization 

Nonlinear optimization (or nonlinear programming) is the term used to describe an optimization 

problem when the objective or constraint functions are not linear,but not known to be convex.  

Sadly, there are no effective methods for solving the general nonlinear programming problem. 

Even simple looking problems with as few as ten variables can be extremely challenging, while 

problems with a few hundreds of variables can be intractable. Methods for the general nonlinear 

programming problem therefore take several different approaches, each of which involves some 

compromise. 

4.4 Local optimization  

In local optimization, the compromise is to give up seeking the optimal x, which minimizes the 

objective over all feasible points. Instead we seek a point that is only locally optimal, which means 

that it minimizes the objective function among feasible points that are near it, but is not guaranteed 

to have a lower objective value than all other feasible points. A large fraction of the research on 

general nonlinear programming has focused on methods for local optimization, which as a 

consequence are well developed.  

Local optimization methods can be fast, can handle large-scale problems, and are widely 

applicable, since they only require differentiability of the objective and constraint functions. As a 

result, local optimization methods are widely used in applications where there is value in finding a 

good point, if not the very best. In an engineering design application, for example, local 
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optimization can be used to improve the performance of a design originally obtained by manual, 

or other, design methods.  

There are several disadvantages of local optimization methods, beyond (possibly) not finding the 

true, globally optimal solution. The methods require an initial guess for the optimization variable. 

This initial guess or starting point is critical, and can greatly affect the objective value of the local 

solution obtained. Little information is provided about how far from (globally) optimal the local 

solution is. Local optimization methods are often sensitive to algorithm parameter values, which 

may need to be adjusted for a particular problem, or family of problems.  

Using a local optimization method is trickier than solving a least-squares prob- lem, linear 

program, or convex optimization problem. It involves experimenting with the choice of algorithm, 

adjusting algorithm parameters, and finding a good enough initial guess (when one instance is to 

be solved) or a method for producing a good enough initial guess (when a family of problems is to 

be solved). Roughly speaking, local optimization methods are more art than technology. Local 

opti- mization is a well developed art, and often very effective, but it is nevertheless an art. In 

contrast, there is little art involved in solving a least-squares problem or a linear program (except, 

of course, those on the boundary of what is currently possible).  

An interesting comparison can be made between local optimization methods for nonlinear 

programming, and convex optimization. Since differentiability of the objective and constraint 

functions is the only requirement for most local optimization methods, formulating a 

practical problem as a nonlinear optimization problem is relatively straightforward. The art 

in local optimization is in solving the problem (in the weakened sense of finding a locally 

optimal point), once it is formulated. In convex optimization these are reversed: The art 

and challenge is in problem formulation; once a problem is formulated as a convex 

optimization problem, it is relatively straightforward to solve it.  
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4.4 Global optimization  

In global optimization, the true global solution of the optimization problem (1.1) is found; the 

compromise is efficiency. The worst-case complexity of global opti- mization methods grows 

exponentially with the problem sizes n and m; the hope is that in practice, for the particular 

problem instances encountered, the method is far faster. While this favorable situation does occur, 

it is not typical. Even small problems, with a few tens of variables, can take a very long time (e.g., 

hours or days) to solve.  

Global optimization is used for problems with a small number of variables, where computing time 

is not critical, and the value of finding the true global solution is very high. One example from 

engineering design is worst-case analysis or verifica- tion of a high value or safety-critical system. 

Here the variables represent uncertain parameters, that can vary during manufacturing, or with the 

environment or op- erating condition.  

The objective function is a utility function, i.e., one for which smaller values are worse than larger 

values, and the constraints represent prior knowledge about the possible parameter values. The 

optimization problem (1.1) is the problem of finding the worst-case values of the parameters. If 

the worst-case value is acceptable, we can certify the system as safe or reliable (with respect to the 

parameter variations).  

A local optimization method can rapidly find a set of parameter values that is bad, but not 

guaranteed to be the absolute worst possible. If a local optimiza- tion method finds parameter 

values that yield unacceptable performance, it has succeeded in determining that the system is not 

reliable. But a local optimization method cannot certify the system as reliable; it can only fail to 

find bad parameter values. A global optimization method, in contrast, will find the absolute worst 

val- ues of the parameters, and if the associated performance is acceptable, can certify the system 

as safe. The cost is computation time, which can be very large, even for a relatively small number 

of parameters. But it may be worth it in cases where the value of certifying the performance is 

high, or the cost of being wrong about the reliability or safety is high.  
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Fig 4  Boundary of second-order cone in R3, {(x1,x2,t) | (x21+x2)1/2 ≤ t}.  

The second-order cone is also known by several other names. It is called the 

quadratic cone, since it is defined by a quadratic inequality. It is also called the 

Lorentz cone or ice-cream cone. Figure 2.10 shows the second-order cone in R3.  
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4.5 Second Order Cone Programming 

The pulse compression concept in radar systems appears as a solution to the dichotomous problem 

of simultaneously obtaining high transmitted pulse energy, in order to achieve long range, along 

with high local energy concentration after processing in the radar receiver, to yield high range 

resolution. Of course, using matched filter to compress signal with large time and frequency band, 

the output pulse can be narrow. Although pulse compression waveforms bear low side-lobes in 

their autocorrelations, the side-lobe levels can not satisfy the needs in many practical applications. 

So, further side-lobe reduction is desired. According to different signals we use variant side-lobes 

reduction techniques, including two kinds of configuration: the first kind is to add side-lobes 

reduction filter after matched filter, the other kind is to design mismatched filter directly, realising 

pulse compression and side-lobes suppression at the same time.  

There are many pulse compression signals including linear chirp signal, nonlinear chirp signal, bi-

phase codes and polyphase codes etc. Different classes of pulse compression waveforms have 

different pulse compression properties, and polyphase-pulse-compression codes have many useful 

features. The Frank, P1, P2 codes which have been derived from step-approximately-to-linear-

frequency-modulation pulse compression waveforms and P3, P4 codes which have been de-rived 

from linear-frequency-modulation pulse compression waveforms are typical polyphase codes, and 

the P4 code which possess these features such as low range-time-side-lobe, ease of 

implementation, low cross-correlation between codes, large Doppler tolerance and compatibility 

with band-pass limited receivers at the same time is the best of them.  

In respect to side-lobe reduction for P4 code, several techniques available can be adopted 

including the classical window function amplitude weighting, the post-compression sliding 

window 2-sample processing and second-order cone programming amplitude and phase 

!48



weighting. Of course, using these techniques can substantially reduce the side-lobe levels of the 

compressed pulses of the codes. However, higher distance resolution and lower side-lobe levels in 

many special applications are needed, for the polyphase codes with arbitrary phase, optimal design 

method combined with pulse compression filters was proposed and obtained good results  

Classical window function amplitude weighting in time domain and post compression, 2-sample 

Averager processing are two kind s of classical side-lobe suppression methods specific to 

polyphase codes, the two methods are belong to the structure of using side-lobe suppression filter 

after matching pulse compression. In addition, we can suppress the side-lobe through designing 

mismatched filter directly for p4 code, there are lots of ways to design mismatched filter, such as 

including the least square method, linear programming and neural network, etc.  

They are able to suppress range sidelobes well but have some certain shortcomings, among them 

the least square method is able to get the optimal filter of minimum integral sidelobes, but it need 

to iterate for a lot of times and it’s hard to control iteration times and convergence; Generally the 

linear programming method isn’t suitable for polyphase codes; Convergence speed of neural 

network method is slow, so it affects its practical application.  

However, using above methods to design mismatched filter is only considering to minimise the 

side-lobes of compressed pulse, but not considering SNR loss. Document proposed a method to 

design side-lobe suppression filter based on Second-order cone programming, this method 

translates the design of sidelobe suppression filter under the condition of biggest SNR loss into the 

second-order cone issue , and using interior point method to solve it efficiently. The specific 

details will be discussed as follows.  
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We can get the coefficient  f of side-lobe suppression filter from the following formula  

  

min || RH f ||m, s.t. sH f =1, ||f ||≤10(ε /20)                                                  4.1 

ε is the biggest SNR loss, the unit is dB. 

The formula above can be explained like this, under the constraints of the maximum SNR loss , 

solve the minimum peak side-lobe filter when the main-lobe value of comp-ressed pulse is set to 

1.  R is a matrix consists of signal sequence s and zeros, shown as follows.  

where s denotes the signal sequence which filled with zero to both ends , and the middle of the 

sequence is the code sequence, and the length of is equal to f . 
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4.6. Optimal design method combined arbitrary phase codes with side-lobe 

suppression filters optimization  

This method finds the required codes and mismatch filters through applying the optimal algorithm 

to joint optimization of the arbitrary phase codes and the mismatch filter. Genetic algorithms(GA), 

simulated annealing algorithms(SA), gradient search procedure and nonlinear constrained 

optimization method are common optimization algorithms. Of course, these methods above reflect 

a certain advantages and disadvantages when used in the combined optimization.  

Inspired by the optimization waveform design method of the mutual information, document put 

forward a kind of optimal design method combined arbitrary phase codes with side-lobe 

suppression filters optimization, it could be seen as an improvement of the method based on 

second-order cone programming.  

This method can obtain the final mismatch filter and the corresponding optimization code through 

lots of iterations. the core ideas of this method is, do some certain operations to the filter 

coefficients and the initial input signals at this time’s iteration, then form a new phase encoding 

signal as the input signal for the next iteration, it can further reduce the range side-lobes of pulse 

compression results through iterating for a lot of times.  

Using this method, under the condition of the maximum iteration times is 200 and maximum SNR 

loss is 0.75 dB, to design the optimized codes and the corresponding filter for the p4 codes of 

different length, we can get the results as illustrated in table 2. Among them, the practical 

optimized side-lobe refers to the highest side-lobe obtained from the compressed pulse by using 
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joint optimization, the theoretic optimized side-lobe refers to the highest side-lobe obtained 

according to the matching theory.  

From the data of table 2, we can know that this method can get the best side-lobe close to 

matching filter theory only at the cost of small SNR loss, and filter order equals to the input code, 

so it will not increase the implement complexity of the practical system.  

4.1 Ambiguity vs Delay 

These thus discuss and show the results of the pulse compression performance of Polyphase code 

under different side-lobe reduction methods. The classical window function amplitude weightings 

can largely reduce the side-lobes but result in a SNR loss and degraded resolution similar to that of 

LFM waveform. 
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Fig 4.2 Welch Power spectrum with side-lobe suppression filters optimisation  

Fig 4.3 Amplitude vsNormalise Doppler shift  
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4.3.Performance Characteristics 

Table 2: The results of compression Pulse comparison under optimised code and 

filter and windowing techniques 

Table 3. The result of compressed pulse under optimized code and filter 

WIndow Name Peak Side 
Lobe level(dB)

SNR loss

Hann -39.69 1.2935

Hamming -37.29 1.8046

Blackman -38.24 1.3758

Kaiser(beta=2) -26.48 2.416

Kaiser(beta=3) -30.18 0.57735

Kaiser(beta=4) -34.31 0.98957

Code Length Peak Sidelobe(dB) SNR loss(dB)

50 -34.5014 ≤0.75

100 -39.9917 ≤0.75

150 -41.6021 ≤0.75

200 -42.5585 ≤0.75
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Chapter 5  

Conclusion and scope for future work  
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5.1.Conclusion 

This thesis discusses and shows the results of the pulse compression performance of P4 code 

under different side-lobe reduction methods. The classical window function amplitude weightings 

can largely reduce the side-lobes but result in a SNR loss and degraded resolution similar to that of 

LFM waveform. The reduced side-lobes and the range resolution are higher than classical window 

function weighting, and good Doppler tolerance is maintained which is similar to classical 

window function weighting. It was shown that, the mismatch filter based on second order cone 

programming result in low PSL and very low SNR loss, the higher the mismatch filter order is, the 

lower the PSL we can get.  

The design method combined arbitrary phase codes with mismatch filters optimization result in 

the lowest PSL, the lowest SNR loss and the highest range resolution in these methods.. It is to 

deserved to be noted that, for classical window function weighting method, the side-lobes decrease 

as the number of P4 code elements increase which is not similar to LFM waveforms.  

In fact, we could not find the best method to reduce side-lobes for pulse compression because all 

methods exist certain defect. According to the practical applications, we should choose the suitable 

method to play up strengths and avoid weakness, of course, do some corresponding improvements 

when needed, finally, we could realize the design better.  
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5.2. Scope of Future Work  

The work can be extended by improving PSL performance, SNR performance and specially  

Doppler shift interference by implementing the sidelobe cancellation technique which exactly 

cancels all the sidelobes as in the case of complementary code. There is a scope of designing a 

polyphase code which has lower sidelobes and is more Doppler tolerant than the codes discussed 

in the thesis by using the P4 code concept. Convex optimization can further help to improve 

Doppler tolerance and work can be extended to improve PSL and SNR with Doppler shift 

introduced. Other forms of convex optimisations may also be considered and used depending upon 

the need and speed of processing. 
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APPENDIX 

MATLAB CODE: 

P1 Autocorrelation 

clear all; 
A=1; 
f = 1030e6; 
fs= 2*f; 
j= sqrt(-1); 
m=10; 
cpp= 1; 
tb =1/(fs); 
  
N=m; 
for i=1:m 
    for j=1:m 
        phi(i,j)= (-pi/N)*[N-(2*j-1)]*[(j-1)*N+(i-1)]; 
    end 
end 
  
index=0; 
  
for i=1:m 
    for j=1:m 
        I(index+1)= A*cos(2*pi*f*tb+phi(i,j)); %In phase component 
        Q(index+1)= A*sin(2*pi*f*tb+phi(i,j)); %Quadrature phase component 
         
        time(index+1)=index*tb; 
        index = index+1; 
    end 
end 
  
  
figure, 
corr_signal = xcorr(I); 
plot(corr_signal./max(max(corr_signal))); 
grid on; 
title('P1 Code length-64 Autocorrelation Function') 
xlabel('Correlation Indices') 
ylabel('Matched Filter Output(dB)'); 
axis tight; 

P1 Code Phase values 

% P1 PHASE 
A = zeros(10,10); 
B=[]; 
N=10; 
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for m = 1:N 
    for n = 1:N 
        A(m,n) = wrapTo2Pi(-(pi/N)*[N-(2*n-1)]*[((n-1)*N)+(m-1)]); 
         
        B(end+1) = A(m,n); 
    end 
     
end 
            
stem(B); 
title('P1 Phase Values'); 
xlabel('Samples'); 
ylabel('Radians'); 

P1 code Power spectrum 

P1 code Power Spectrum: 
%generated by Matlab wradar Waveform analyser 
h = phased.PhaseCodedWaveform; 
% Set the values of the properties 
h.SampleRate = 3000000; 
h.Code = 'P1'; 
h.PRF = 10e+3; 
h.NumPulses = 10; 
h.ChipWidth = 1e-06; 
h.NumChips = 4; 
% Generate and scale the plot 
Fs = h.SampleRate; 
x = step(h); 
[X, f] = pwelch(x, [], [], [], Fs, 'twosided'); 
[~, scale, Units] = engunits(max(f)); 
plot((f-Fs/2)*scale, fftshift(X), 'b'); 
axis('tight') 
xlabel(sprintf('Frequency (%sHz)',Units)); 
ylabel('Power/Frequency (dB/Hz)'); 
title('Power Spectral Density of Baseband Signal'); 
grid on; 

P2 Code Autocorrelation 

clc; 
clear all; 
close all; 
A=1; 
f = 1030e6; 
fs= 2*f; 
j= sqrt(-1); 
m=10; 
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cpp= 1; 
tb =1/(fs); 
  
N=10; 
for i=1:m 
    for j=1:m 
        phi(i,j)= (pi/(2*N))*[N-(2*i)+1]*[N-(2*j)+1]; 
    end 
end 
  
index=0; 
  
for i=1:m 
    for j=1:m 
        I(index+1)= A*cos(2*pi*f*tb+phi(i,j)); %In phase component 
        Q(index+1)= A*sin(2*pi*f*tb+phi(i,j)); %Quadrature phase component 
         
        time(index+1)=index*tb; 
        index = index+1; 
    end 
end 
  
figure, 
corr_signal = xcorr(I); 
plot(corr_signal./max(max(corr_signal))); 
grid on; 
axis tight; 

P2 Phase values for each sample 

%P2 PHASE 
A = zeros(10,10); 
B=[]; 
N=10; 
for m = 1:N 
    for n = 1:N 
        A(m,n) = wrapTo2Pi((pi/(2*N))*[N-(2*m)+1]*[N-(2*n)+1]); 
         
        B(end+1) = A(m,n); 
    end 
     
end 
            
stem(B); 
title('P2 PHASE VALUES','color','B'); 
xlabel('Samples'); 
ylabel(‘Radians’); 

P2 Power Spectrum 
%generated by Matlab wradar Waveform analyser 
h = phased.PhaseCodedWaveform; 
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% Set the values of the properties 
h.SampleRate = 3000000; 
h.Code = 'P2'; 
h.PRF = 10e+3; 
h.NumPulses = 3; 
h.ChipWidth = 1e-06; 
h.NumChips = 4; 
% Generate and scale the plot 
Fs = h.SampleRate; 
x = step(h); 
y= filter(Hamming,x); 
[X, f] = pwelch(y, [], [], [], Fs, 'twosided'); 
[~, scale, Units] = engunits(max(f)); 
plot((f-Fs/2)*scale, fftshift(X), 'b'); 
axis('tight') 
xlabel(sprintf('Frequency (%sHz)',Units)); 
ylabel('Power/Frequency (dB/Hz)'); 
title('Power Spectral Density of Baseband Signal'); 
grid on; 
  

P3 Autocorrelation function: 

clear all; 
A=1; 
f = 1030e6; 
fs= 2*f; 
j= sqrt(-1); 
m=100; 
cpp= 1; 
tb =1/(fs); 
  
N=16; 
for i=1:m 
        phi(i)= (-pi/N)*[(i-1)^2]; 
     
end 
  
index=0; 
y=sort(abs(phi)); 
for i=1:m 
        I(index+1)= A*cos(2*pi*f*tb+y(i)); %In phase component 
        Q(index+1)= A*sin(2*pi*f*tb+y(i)); %Quadrature phase component 
         
        time(index+1)=index*tb; 
        index = index+1; 
     
end 
  
  
figure, 
corr_signal = xcorr(I); 
plot(corr_signal./max(max(corr_signal))); 
grid on; 
title('P1 Code length-64 Autocorrelation Function') 
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xlabel('Correlation Indices') 
ylabel('Matched Filter Output(dB)'); 
axis tight; 

P3 Power Spectrum 

%generated by Matlab wradar Waveform analyser 

h = phased.PhaseCodedWaveform; 
% Set the values of the properties 
h.SampleRate = 3000000; 
h.Code = 'P3'; 
h.PRF = 10e+3; 
h.NumPulses = 100; 
h.ChipWidth = 1e-06; 
h.NumChips = 4; 
% Generate and scale the plot 
Fs = h.SampleRate; 
x = step(h); 
[X, f] = pwelch(x, [], [], [], Fs, 'twosided'); 
[~, scale, Units] = engunits(max(f)); 
plot((f-Fs/2)*scale, fftshift(X), 'b'); 
axis('tight') 
xlabel(sprintf('Frequency (%sHz)',Units)); 
ylabel('Power/Frequency (dB/Hz)'); 
title('Power Spectral Density of Baseband Signal'); 
grid on; 

P4 Autocorrelation function 

clc; 
clear all; 
close all; 
A=1; 
f = 1030e6; 
fs= 2*f; 
j= sqrt(-1); 
m=100; 
cpp= 1; 
tb =1/(fs); 
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N=16; 
for i=1:m 
        phi(i)= (pi/(N))*(i-1)*(i-N-1); 
     
end 
  

index=0; 
for i=1:m 
        I(index+1)= A*cos(2*pi*f*tb+phi(i)); %In phase component 
        Q(index+1)= A*sin(2*pi*f*tb+phi(i)); %Quadrature phase component 
         
        time(index+1)=index*tb; 
        index = index+1; 
     
end 
  
figure, 
corr_signal = xcorr(I); 
plot(corr_signal./max(max(corr_signal))); 
grid on; 
title('P4 Code length-100 Autocorrelation Function') 
xlabel('Correlation Indices') 
ylabel('Matched Filter Output'); 
legend('PSL = 20*log10(0.04083/1) = -26.32 dB'); 
axis tight; 

P4 Power Spectrum  

%generated by Matlab wradar Waveform analyser 
h = phased.PhaseCodedWaveform; 
% Set the values of the properties 
h.SampleRate = 3000000; 
h.Code = 'P4'; 
h.PRF = 10e+3; 
h.NumPulses = 3; 
h.ChipWidth = 1e-06; 
h.NumChips = 4; 
% Generate and scale the plot 
Fs = h.SampleRate; 
x = step(h); 
[X, f] = pwelch(x, [], [], [], Fs, 'twosided'); 
[~, scale, Units] = engunits(max(f)); 
plot((f-Fs/2)*scale, fftshift(X), 'b'); 
axis('tight') 
xlabel(sprintf('Frequency (%sHz)',Units)); 
ylabel('Power/Frequency (dB/Hz)'); 
title('Power Spectral Density of Baseband Signal'); 
grid on; 
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Barker Code Autocorrelation function  

% generated by Radar waveform analyser 
h = phased.PhaseCodedWaveform; 
% Set the values of the properties 
h.SampleRate = 3000000; 
h.Code = 'Barker'; 
h.PRF = 10e+3; 
h.NumPulses = 1; 
h.ChipWidth = 7e-06; 
h.NumChips = 13; 
% Generate and scale the plot 
Fs = h.SampleRate; 
x = step(h); 
if isa(h, 'phased.FMCWWaveform') 
    prf = 1/h.SweepTime; 
else 
    prf = h.PRF; 
end 
figure(1) 
ambgfun(x,Fs,prf,'Cut','Doppler'); 
ylabel('Amplitude'); 
title('Autocorrelation Function/Matched Filter Response'); 
hold; 

Frank Code Autocorrelation 

% F AC 
clear all; 
A=1; 
f = 1030e6; 
fs= 2*f; 
j= sqrt(-1); 
m=10; 
cpp= 1; 
tb =1/(fs); 
  
N=m; 
for i=1:m 
    for j=1:m 
        phi(i,j)= (2*pi/N)*(j-1)*(i-1); 
    end 
end 
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index=0; 
  
for i=1:m 
    for j=1:m 
        I(index+1)= A*cos(2*pi*f*tb+phi(i,j)); %In phase component 
        Q(index+1)= A*sin(2*pi*f*tb+phi(i,j)); %Quadrature phase component 
         
        time(index+1)=index*tb; 
        index = index+1; 
    end 
end 
  
  
figure, 
corr_signal = xcorr(I); 
plot(corr_signal./max(max(corr_signal))); 
grid on; 
title('Frank Code length-100 Autocorrelation Function') 
xlabel('Correlation Indices') 
ylabel('Matched Filter Output(dB)'); 
axis tight; 

Frank Code Phase values: 
% F PHASE 
A = zeros(10,10); 
B=[]; 
for m = 1:10 
    for n = 1:10 
        A(m,n) = wrapTo2Pi((2*pi/10)*(m-1)*(n-1)); 
         
        B(end+1) = A(m,n); 
    end 
     
end 
            
stem(B); 
title('Phase Values'); 
xlabel('Samples'); 
ylabel('Radians'); 
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Matched Filter Function: 

%nscat is the number of scattering points within window(none) 
%rmin min range of receiving window(Km) 
%rrec range receiving window(m) 
%taup(uncompressed pulse width(seconds) 
%f()chirp start frequency (Hz) 
%b chirp Bandwidth (Hz) 
%scat_range vector of scattered range(Km) 
%scat_rsc RCS vector scatteres(m^2) 
%win 0- no window(none) 
%    1-Hamming 
%    2-Kaiser 
% 3.chebychev 
%y compressed output(volts) 
function [y] = matched__filter(nscat, taup, f0, b, rmin, rrec,.. 
scat_range,scat_rcs, winid) 
  
eps = 1.0e-16; 
htau = 0.005e-3 / 2.; 
c = 3.e8; 
b= b; 
n = fix(2. * 0.005e-3 * b); 
m = power_integer_2(n); 
nfft = 2.^m; 
nscat=nscat; 
x(nscat,1:nfft) = 0.; 
y(1:nfft) = 0.; 
replica(1:nfft) = 0.; 
winid =winid;%Kaiser 
if( winid == 0.) 
    win(1:nfft) = 1.; 
    win =win'; 
elseif(winid == 1.) 
    win = hamming(nfft); 
elseif( winid == 2.) 
    win = kaiser(nfft,pi); 
elseif(winid == 3.) 
    win = chebwin(nfft,60); 
end 
deltar = c / 2. / b; 
max_rrec = deltar * nfft / 2.; 
rmin =rmin; 
scat_range= scat_range; 
maxr = max(scat_range) - rmin; 
rrec =rrec;   
  
if(rrec > max_rrec | maxr >= rrec ) 
'Error. Receive window is too large; or scatterers fall outside window' 
  
end 
trec = 2. * rrec / c; 
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taup = taup; 
deltat = taup / nfft; 
t = 0: deltat:taup-eps; 
uplimit = max(size(t)); 
replica(1:uplimit) = exp(1i * 2.* pi * (.5 * (b/taup) .* t.^2)); 
figure(3) 
subplot(2,1,1) 
plot(real(replica)) 
title('Matched filter time domain response') 
subplot(2,1,2) 
plot(fftshift(abs(fft(replica)))); 
title('Matched filter frequency domain response') 
for j = 1:1:nscat 
t_tgt = 2. * (scat_range(j) - rmin) / c +htau; 
scat_rcs =scat_rcs; 
x(j,1:uplimit) = scat_rcs(j) .* exp(1i * 2.* pi * ... 
(.5 * (b/taup) .* (t+t_tgt).^2)); 
y = y + x(j,:); 
end 
figure(1) 
plot(t,real(y),'k') 
xlabel ('Relative delay - seconds') 
ylabel ('Uncompressed echo') 
title ('Zero delay coincide with minimum range') 
rfft = fft(replica,nfft); 
yfft = fft(y,nfft); 
out= abs(ifft((rfft .* conj(yfft)) .* win' )) ./ (nfft); 
figure(2) 
time = -htau:deltat:htau-eps; 
plot(time,out,'k') 
xlabel ('Relative delay - seconds') 
ylabel ('Compressed echo') 
title ('Zero delay coincide with minimum range') 
grid 
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Function to compute PSL, ISL, Merit factor: 

% ========================================================================= 
% 
%   Compute estimate Peak Sidelobe Level and Integrated Sidelobe Level 
%            of ambiguity function by zero Doppler velocity and  
% in case partialy minimize bounds on the volume of ambiguity function with 
%                           Doppler velocity. 
%  ======================================================================== 
%" The ambiguity function over the Doppler velocity interval [0,-50]m/s would 
be identical ".  
function 
[ISLakf,PSLakf,MeritFactor,ISLamb,PSLamb]=Compare_Sidelobes(A,B,fftPoint) 
%(ï¿½)-must be complex signal (example [-1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 -1] ) 
% and (B) the other signal, when we investigation complementary codes. If 
% you have only one code for investigation you must type "B=[0]". 
% Function return ISL(Integrated Sidelobe Level), PSL(Peak Sidelobe Leve), 
Merit Factor and Peak Sidelobes Power for  
% differently complex signals.  
  
akf1=xcorr(A); 
akf2=xcorr(B); 
A1=akf1; 
A2=akf2; 
  
 figure 
 subplot(2,1,1),plot(A) 
 title (' Phase coded transmit waveform') 
 %subplot(2,1,1),hold,plot(A1),plot(A2,'r') 
 %title (' Pulse Compression of Zcomplementary sets') 
 %legend('Zcomlplementary 1' , 'Zcomplementary 2' ) 
  
akf=akf1+akf2; 
akf=abs(akf); 
m = max(akf); 
akf=akf./m; 
AKF=akf; 
  
s=sum(AKF); 
mm=max(AKF); 
  
  
ISLakf=10*log10((s-mm)/m) 
      
      subplot(2,1,2),plot(AKF) 
      title  ( ' Resulting Pulse Compression') 
      text (20,0.9,'main lobe power') 
      text (2,0.2,'range sidelobes') 
       
     
    [row,col]=max(AKF); 
    maxi=AKF; 
    maxi(row,col)=0; 
    mm1=max(maxi); 
    
    PSLakf=10*log10(mm1/m) 
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    MeritFactor=m/(s-mm) 
     
amb1=ambiguity(A); 
amb2=ambiguity(B); 
amb=amb1+amb2; 
x = amb; 
[n,m] = size(x); 
V1 = 0; 
a = m/4; 
b = n/4; 
V1 = zeros(n,m); 
  
for j=1:m 
    for i=1:n 
        if (j>(m/2-a)) && (j<(m/2+a)) 
            if (i>(n/2-b)) && (i<(n/2+b)) 
                V1(i,j) = x(i,j); 
            end 
        end 
    end 
end 
  
  
B=fft(V1,fftPoint); 
V1=abs(B); 
V1=abs(V1); 
V1=V1.^2; 
M=max(V1); 
MM=max(M);      % unfixed max value from the matrix "V1" 
V2=V1; 
V2=V2./MM;      % fixed value on the matrix "V2" 
V3=V2;         
  
[M,N] = size(V3);                      %  
V3_vector = reshape(V3,1,M*N); 
[Value,Index] = max(V3_vector); 
V3_vector(Index) = 0; 
V3 = reshape(V3_vector,M,N); 
M1=max(max(V3));                 % max value on sidelobe level 
  
  
  
M2=max(V2); 
MM2=max(M2);    % fixed max value from the matrix "V2" 
  
S=sum(V2); 
SS=sum(S); 
  
ISLamb=10*log10((SS-MM2)/MM) 
PSLamb=10*log10(M1/MM) 
disp(ISLamb); 
disp(PSLamb); 
  
 figure 
 mesh(V2) 
 title  ( ' Ambiguity function') 
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 %text (10,10,1.2,' x(t,f)') 
axes_handle = xlabel('t/T'); 
set(axes_handle,'FontName','Symbol'); 
axes_handle = ylabel('nT'); 
set(axes_handle,'FontName','Symbol'); 
axes_handle = zlabel('|c(t,n)|'); 
set(axes_handle,'FontName','Symbol'); 

Function to design windows 
%one can also design using the matlab filter design app. 

function h=tftb_window(N,name,param,param2); 
%tftb_window    Window generation. 
%   H=tftb_window(N,NAME,PARAM,PARAM2) 
%   yields a window of length N with a given shape. 
% 
%   N      : length of the window 
%   NAME   : name of the window shape (default : Hamming) 
%   PARAM  : optional parameter 
%   PARAM2 : second optional parameters 
% 
%   Possible names are : 
%   'Hamming', 'Hanning', 'Nuttall',  'Papoulis', 'Harris', 
%   'Rect',    'Triang',  'Bartlett', 'BartHann', 'Blackman' 
%   'Gauss',   'Parzen',  'Kaiser',   'Dolph',    'Hanna'. 
%   'Nutbess', 'spline',  'Flattop' 
% 
%   For the gaussian window, an optionnal parameter K 
%   sets the value at both extremities. The default value is 0.005 
% 
%   For the Kaiser-Bessel window, an optionnal parameter 
%   sets the scale. The default value is 3*pi. 
% 
%   For the Spline windows, h=tftb_window(N,'spline',nfreq,p) 
%   yields a spline weighting function of order p and frequency 
%   bandwidth proportional to nfreq. 
% 
%       Example:  
%        h=tftb_window(256,'Gauss',0.005);  
%        plot(0:255, h); axis([0,255,-0.1,1.1]); grid 
% 
%    
if (nargin==0), error ( 'at least 1 parameter is required' ); end; 
if (N<=0), error('N should be strictly positive.'); end; 
if (nargin==1), name= 'Hamming'; end ; 
name=upper(name); 
if strcmp(name,'RECTANG') | strcmp(name,'RECT'),  
 h=ones(N,1); 
elseif strcmp(name,'HAMMING'), 
 h=0.54 - 0.46*cos(2.0*pi*(1:N)'/(N+1)); 
elseif strcmp(name,'HANNING') | strcmp(name,'HANN'), 
 h=0.50 - 0.50*cos(2.0*pi*(1:N)'/(N+1)); 
elseif strcmp(name,'KAISER'), 
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 if (nargin==3), beta=param; else beta=3.0*pi; end; 
 ind=(-(N-1)/2:(N-1)/2)' *2/N; beta=3.0*pi; 
 h=bessel(0,j*beta*sqrt(1.0-ind.^2))/real(bessel(0,j*beta)); 
elseif strcmp(name,'NUTTALL'), 
 ind=(-(N-1)/2:(N-1)/2)' *2.0*pi/N; 
 h=+0.3635819 ... 
   +0.4891775*cos(    ind) ... 
   +0.1363995*cos(2.0*ind) ... 
   +0.0106411*cos(3.0*ind) ; 
elseif strcmp(name,'BLACKMAN'), 
 ind=(-(N-1)/2:(N-1)/2)' *2.0*pi/N; 
 h= +0.42 + 0.50*cos(ind) + 0.08*cos(2.0*ind) ; 
elseif strcmp(name,'HARRIS'), 
 ind=(1:N)' *2.0*pi/(N+1); 
 h=+0.35875 ... 
   -0.48829 *cos(    ind) ... 
   +0.14128 *cos(2.0*ind) ... 
   -0.01168 *cos(3.0*ind); 
elseif strcmp(name,'BARTLETT') | strcmp(name,'TRIANG'), 
 h=2.0*min((1:N),(N:-1:1))'/(N+1); 
elseif strcmp(name,'BARTHANN'), 
 h=  0.38 * (1.0-cos(2.0*pi*(1:N)/(N+1))') ... 
   + 0.48 * min((1:N),(N:-1:1))'/(N+1); 
elseif strcmp(name,'PAPOULIS'), 
 ind=(1:N)'*pi/(N+1); h=sin(ind); 
elseif strcmp(name,'GAUSS'), 
 if (nargin==3), K=param; else K=0.005; end; 
 h= exp(log(K) * linspace(-1,1,N)'.^2 ); 
elseif strcmp(name,'PARZEN'), 
 ind=abs(-(N-1)/2:(N-1)/2)'*2/N; temp=2*(1.0-ind).^3; 
 h= min(temp-(1-2.0*ind).^3,temp); 
elseif strcmp(name,'HANNA'), 
 if (nargin==3), L=param; else L=1; end; 
 ind=(0:N-1)';h=sin((2*ind+1)*pi/(2*N)).^(2*L); 
elseif strcmp(name,'DOLPH') | strcmp(name,'DOLF'), 
 if (rem(N,2)==0), oddN=1; N=2*N+1; else oddN=0; end; 
 if (nargin==3), A=10^(param/20); else A=1e-3; end; 
 K=N-1; Z0=cosh(acosh(1.0/A)/K); x0=acos(1/Z0)/pi; x=(0:K)/N;  
 indices1=find((x<x0)|(x>1-x0)); 
 indices2=find((x>=x0)&(x<=1-x0)); 
 h(indices1)= cosh(K*acosh(Z0*cos(pi*x(indices1)))); 
 h(indices2)= cos(K*acos(Z0*cos(pi*x(indices2)))); 
 h=fftshift(real(ifft(A*real(h))));h=h'/h(K/2+1); 
 if oddN, h=h(2:2:K); end; 
elseif strcmp(name,'NUTBESS'), 
 if (nargin==3), beta=param; nu=0.5;  
 elseif (nargin==4), beta=param; nu=param2; 
 else beta=3*pi; nu=0.5; 
 end; 
 ind=(-(N-1)/2:(N-1)/2)' *2/N;  
 h=sqrt(1-ind.^2).^nu .* ... 
   real(bessel(nu,j*beta*sqrt(1.0-ind.^2)))/real(bessel(nu,j*beta)); 
elseif strcmp(name,'SPLINE'), 
 if (nargin < 3), 
  error('Three or four parameters required for spline windows'); 
 elseif (nargin==3), 
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  nfreq=param; p=pi*N*nfreq/10.0; 
 else nfreq=param; p=param2; 
 end; 
  ind=(-(N-1)/2:(N-1)/2)';  
  h=sinc((0.5*nfreq/p)*ind) .^ p; 
elseif strcmp(name,'FLATTOP'), 
 ind=(-(N-1)/2:(N-1)/2)' *2.0*pi/(N-1); 
 h=+0.2810639 ... 
   +0.5208972*cos(    ind) ... 
   +0.1980399*cos(2.0*ind) ; 
else error('unknown window name'); 
end; 

Function to generate n length sequence for optimization 

%Notes ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 
! ! 
%Here is a function of m sequence generated when using them should " call " ; 
here called " call " is to give the 
%Function of an input parameter ( this program refers to the n), m sequence is 
then generated by the function can be assigned to a vector , 
%And does not require initialization vector . For example , this time going to 
generate a sequence of length 127 m , as long as typing at the command line : 
%a = m_gen (4) can be, where to store the sequence of vectors m (here a) the 
name can be arbitrarily defined ; input parameters n = 4 
% Corresponds to a sequence of length 127 m . If you want to generate a 
sequence of other m length , simply by changing the input parameters to the 
program 
% Of the comments section has specified no corresponding n- m length of the 
sequence . The last part of the instructions in order to generate a sequence of 
m 
% Correctness verified, you can not 
  
function mesq=m_gen(n) 
%------------- M sequence generation -------------------------% 
eps=0.00000001; 
switch n 
    case 1 
        connections=[0 0 1 1];                          % 15 yards long 
        register=[1 0 1 0]; 
    case 2 
        connections=[0 0 1 0 1];                        % 31 yards long 
        register=[1 0 1 0 1]; 
    case 3 
        connections=[0 0 0 0 1 1];                      % 63ï¿½ë³¤ 
        register=[1 0 1 0 1 0]; 
    case 4 
        connections=[0 0 0 0 0 1 1];                    % 127ï¿½ë³¤ 
        register=[1 0 1 0 1 0 1]; 
    case 5 
        connections=[0 1 1 1 0 0 0 1];                  % 255ï¿½ë³¤ 
        register=[1 0 1 0 1 0 1 0]; 
    case 6 
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        connections=[0 0 0 1 0 0 0 0 1];                % 511ï¿½ë³¤ 
        register=[1 0 1 0 1 0 1 0 1]; 
    case 7 
        connections=[0 0 1 0 0 0 0 0 0 1];               % 1023ï¿½ë³¤ 
        register=[1 0 1 0 1 0 1 0 1 0]; 
    case 8 
        connections=[0 1 0 0 0 0 0 0 0 0 1];             % 2047 
        register=[1 0 1 0 1 0 1 0 1 0 1]; 
    case 9 
        connections=[0 0 0 0 0 1 0 1 0 0 1 1];           % 4095ï¿½ë³¤    
2011.02.18 
        register=[1 0 1 0 1 0 1 0 1 0 1 0]; 
    otherwise 
        connections=[0 0 0 0 0 0 0 0 1 1 0 1 1];         % 8191 yards long   
2011.02.18 
        register=[1 0 1 0 1 0 1 0 1 0 1 0 1]; 
end  
n=length(connections); 
N=2^n-1;                                 %Code length 
mesq(1)=register(n); 
for i=2:N 
    newregister(1)=mod(sum(connections.*register),2); 
    for j=2:n 
        newregister(j)=register(j-1); 
    end  
    register=newregister; 
    mesq(i)=register(n); 
end 
mesq=2*mesq-1;     

Function to generate Ambiguity vs Delay 

function[mm]=mxu(cn)  %cn Coefficients for the shift register 
len=length(cn);%Desired length of the shift register 
L=2^len-1;%m length sequence 
an=[1,zeros(1,len-2),1];%The initial register contents 
m(1)=an(len);%The first sequence of output symbols m 
for i=2:L 
 for j=2:len     
an1(j)=an(j-1); 
an1(1)=mod(sum(cn.*an),2);%Register with mode feedback 2 and 
 end 
an=an1;%After the shift register 
m(i)=an(len);%The new register output  
end 
figure(1); 
stairs(m);%Drawing on the m-sequence 
axis([0 1200 -2 2]); 
mm=2*m-1; 
%For m sequence verification 
Y=abs(conv(fliplr(mm),mm)); 
figure(2); 

!73



plot(Y); 
  
xlabel('Delay') 
ylabel('Ambiguity') 
title('Ambiguity vs Delay') 
  
  
Function to generate Ambiguity vs Delay 
for some initial sequence cn: 

%used for comparison 
close all; 
clear all; 
clc; 
  
cn=[0 1 1 1 0 0 0 1]; 
%cn=[0 1 1 1 0 0 0 1]; 
sn=mxu(cn); 
sn1=abs(conv(fliplr(sn),sn)); 
  
  
q=0;%The maximum gain loss constraint 
w=w_w(q); 
  
so=(conv(fliplr(sn),w)); 
so1=(so)/max(abs(so)); 
  
figure(1); 
plot(sn1); 
  
figure(2); 
plot(so1); 
title('Ambiguity vs Delay ') 
axis tight 
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Function to suppress sidelobes using second order cone programming: 

function w=w_w(q) 

cn=[0 0 0 1 1 1 1 ]; 
%cn=[0 1 1 1 0 0 0 1]; 
m1=mxu(cn);%m--1023 
N=length(m1); 
m=m1/sqrt(N);M=2*N+1;%2047 
M2=2*M-1;%4093 
N1=(M-N)/2; 
N2=M-N-N1; 
A1=zeros(1,N1); 
A2=zeros(1,N2); 
S=[A1 m A2];%S--2047 
X=zeros(M,M2); 
A5=zeros(1,M-1); 
X(1,:)=[A5,S]; 
X(M,:)=[S,A5]; 
for k=2:M-1 
    A3=zeros(1,M-k); 
    A4=zeros(1,k-1); 
    X1=[A3,S,A4]; 
    X(k,:)=X1; 
end 
  XX=X; 
  XX(:,M)=[]; 
  A=XX; 
cvx_begin  %convex programming where variable(fucntion) is subjected to 
optimization under subjective functions 
   variable w(M); 
    minimize (max(abs(A'*w))) 
    subject to  
        S*w == 1; 
        (w')*w<10^(q/10) 
cvx_end     
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